import datetime
import traceback
import numpy as np
from threading import Timer

import pandas as pd

from utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu
from config import set_config
from log import Log
config_, _ = set_config()
log_ = Log()
redis_helper = RedisHelper()

features = [
    'apptype',
    'adcode',
    'visit_uv_today',
    'visit_uv_yesterday',
    'b'
]


def get_threshold_record_new(ad_abtest_abcode_config, feature_df, threshold_record):
    """根据活跃人数变化计算新的阈值参数"""
    robot_msg_record = []
    threshold_record_new = threshold_record.copy()
    for app_type, config_params in ad_abtest_abcode_config.items():
        # 获取对应端的数据, 更新阈值参数
        # log_.info(f"app_type = {app_type}")
        temp_df = feature_df[feature_df['apptype'] == app_type]
        ab_test_id = config_params.get('ab_test_id')
        ab_test_config = config_params.get('ab_test_config')
        up_threshold_update = config_params.get('up_threshold_update')
        down_threshold_update = config_params.get('down_threshold_update')
        for config_name, ab_code_list in ab_test_config.items():
            ad_abtest_tag = f"{ab_test_id}-{config_name}"
            # log_.info(f"ad_abtest_tag = {ad_abtest_tag}")
            if len(ab_code_list) > 0:
                b_mean = temp_df[temp_df['adcode'].isin(ab_code_list)]['b'].mean()
                if b_mean < 0:
                    # 阈值按梯度调高
                    gradient = up_threshold_update.get('gradient')
                    update_range = up_threshold_update.get('update_range')
                    b_i = (b_mean * -1) // gradient + 1
                    threshold_param_new = float(threshold_record.get(ad_abtest_tag)) + update_range * b_i
                elif b_mean > 0.1:
                    # 阈值按梯度调低
                    gradient = up_threshold_update.get('gradient')
                    update_range = up_threshold_update.get('update_range')
                    b_i = (b_mean - 0.1) // gradient + 1
                    threshold_param_new = float(threshold_record.get(ad_abtest_tag)) - update_range * b_i
                else:
                    continue
                if threshold_param_new > 0:
                    threshold_record_new[ad_abtest_tag] = threshold_param_new
                    robot_msg_record.append({'appType': app_type, 'abtestTag': ad_abtest_tag,
                                             'gradient': round(gradient, 4), 'range': round(update_range, 4),
                                             'i': int(b_i),
                                             'paramOld': round(float(threshold_record.get(ad_abtest_tag)), 4),
                                             'paramNew': round(threshold_param_new, 4)})
    return threshold_record_new, robot_msg_record


def update_threshold(threshold_record_old, threshold_record_new):
    """更新阈值"""
    ad_mid_group_list = [group for class_key, group_list in config_.AD_MID_GROUP.items()
                         for group in group_list]
    ad_mid_group_list.append("mean_group")
    ad_mid_group_list = list(set(ad_mid_group_list))
    for ad_abtest_tag, threshold_param_new in threshold_record_new.items():
        threshold_param_old = threshold_record_old.get(ad_abtest_tag)
        log_.info(f"ad_abtest_tag = {ad_abtest_tag}, "
                  f"threshold_param_old = {threshold_param_old}, threshold_param_new = {threshold_param_new}")
        tag_list = ad_abtest_tag.split('-')
        for group_key in ad_mid_group_list:
            # 获取对应的阈值
            key_name = f"{config_.KEY_NAME_PREFIX_AD_THRESHOLD}{tag_list[0]}:{tag_list[1]}:{group_key}"
            threshold_old = redis_helper.get_data_from_redis(key_name=key_name)
            if threshold_old is None:
                continue
            # 计算新的阈值
            threshold_new = float(threshold_old) / threshold_param_old * threshold_param_new
            log_.info(f"ad_abtest_tag = {ad_abtest_tag}, group_key = {group_key}, "
                      f"threshold_old = {threshold_old}, threshold_new = {threshold_new}")
            # 更新redis
            redis_helper.set_data_to_redis(key_name=key_name, value=threshold_new)


def update_ad_abtest_threshold(project, table, dt, ad_abtest_abcode_config):
    # 获取当前阈值参数值
    threshold_record = redis_helper.get_data_from_redis(key_name=config_.KEY_NAME_PREFIX_AD_THRESHOLD_RECORD)
    threshold_record = eval(threshold_record)
    log_.info(f"threshold_record = {threshold_record}")
    # 获取uv数据
    feature_df = get_feature_data(project=project, table=table, features=features, dt=dt)
    feature_df['apptype'] = feature_df['apptype'].astype(int)
    feature_df['b'] = feature_df['b'].astype(float)
    # 根据活跃人数变化计算新的阈值参数
    threshold_record_new, robot_msg_record = get_threshold_record_new(
        ad_abtest_abcode_config=ad_abtest_abcode_config, feature_df=feature_df, threshold_record=threshold_record)
    log_.info(f"threshold_record_new = {threshold_record_new}")
    # 更新阈值
    update_threshold(threshold_record_old=threshold_record, threshold_record_new=threshold_record_new)
    # 更新阈值参数
    redis_helper.set_data_to_redis(key_name=config_.KEY_NAME_PREFIX_AD_THRESHOLD_RECORD,
                                   value=str(threshold_record_new))
    return robot_msg_record


def timer_check():
    try:
        ad_abtest_abcode_config = config_.AD_ABTEST_ABCODE_CONFIG
        project = config_.AD_THRESHOLD_AUTO_UPDATE_DATA.get('project')
        table = config_.AD_THRESHOLD_AUTO_UPDATE_DATA.get('table')
        now_date = datetime.datetime.today()
        now_min = datetime.datetime.now().minute
        log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
        dt = datetime.datetime.strftime(now_date - datetime.timedelta(hours=1), '%Y%m%d%H')

        # 查看当前更新的数据是否已准备好
        data_count = data_check(project=project, table=table, dt=dt)
        if data_count > 0:
            log_.info(f"data count = {data_count}")
            # 数据准备好,进行更新
            robot_msg_record = update_ad_abtest_threshold(
                project=project, table=table, dt=dt, ad_abtest_abcode_config=ad_abtest_abcode_config)
            if len(robot_msg_record) > 0:
                robot_msg_record_text = "\n".join([str(item) for item in robot_msg_record])
                msg = f"threshold_param_update: \n{robot_msg_record_text.replace(', ', ',   ')}\n"
            else:
                msg = "无需更新!\n"
            send_msg_to_feishu(
                webhook=config_.FEISHU_ROBOT['ad_threshold_auto_update_robot'].get('webhook'),
                key_word=config_.FEISHU_ROBOT['ad_threshold_auto_update_robot'].get('key_word'),
                msg_text=f"rov-offline{config_.ENV_TEXT} - 阈值更新完成!\n{msg}"

            )
            log_.info(f"threshold update end!")
        elif now_min > 30:
            log_.info('threshold update data is None!')
            send_msg_to_feishu(
                webhook=config_.FEISHU_ROBOT['ad_threshold_auto_update_robot'].get('webhook'),
                key_word=config_.FEISHU_ROBOT['ad_threshold_auto_update_robot'].get('key_word'),
                msg_text=f"rov-offline{config_.ENV_TEXT} - 阈值更新相关数据未准备好!\n"
            )
        else:
            # 数据没准备好,1分钟后重新检查
            Timer(60, timer_check).start()

    except Exception as e:
        log_.error(f"阈值更新失败, exception: {e}, traceback: {traceback.format_exc()}")
        send_msg_to_feishu(
            webhook=config_.FEISHU_ROBOT['ad_threshold_auto_update_robot'].get('webhook'),
            key_word=config_.FEISHU_ROBOT['ad_threshold_auto_update_robot'].get('key_word'),
            msg_text=f"rov-offline{config_.ENV_TEXT} - 阈值更新失败\n"
                     f"exception: {e}\n"
                     f"traceback: {traceback.format_exc()}"
        )


if __name__ == '__main__':
    timer_check()