import copy
import datetime
import traceback
import math
import numpy as np
from threading import Timer
import pandas as pd
from utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu, request_get
from config import set_config
from log import Log
config_, _ = set_config()
log_ = Log()
redis_helper = RedisHelper()
features = [
'apptype',
'分组',
'广告uv'
]
def get_threshold_record_new(ad_abtest_abcode_config, feature_df, threshold_record):
"""根据活跃人数变化计算新的阈值参数"""
robot_msg_record = []
threshold_record_new = threshold_record.copy()
for app_type, config_params in ad_abtest_abcode_config.items():
# 获取对应端的数据, 更新阈值参数
# log_.info(f"app_type = {app_type}")
temp_df = feature_df[feature_df['apptype'] == app_type]
ab_test_id = config_params.get('ab_test_id')
ab_test_config = config_params.get('ab_test_config')
up_threshold_update = config_params.get('up_threshold_update')
down_threshold_update = config_params.get('down_threshold_update')
for config_name, ab_code_list in ab_test_config.items():
ad_abtest_tag = f"{ab_test_id}-{config_name}"
# log_.info(f"ad_abtest_tag = {ad_abtest_tag}")
if len(ab_code_list) > 0:
b_mean = temp_df[temp_df['adcode'].isin(ab_code_list)]['b'].mean()
if b_mean < 0:
# 阈值按梯度调高
gradient = up_threshold_update[config_name].get('gradient')
update_range = up_threshold_update[config_name].get('update_range')
b_i = (b_mean * -1) // gradient + 1
threshold_param_new = float(threshold_record.get(ad_abtest_tag)) + update_range * b_i
elif b_mean > 0.1:
# 阈值按梯度调低
gradient = down_threshold_update[config_name].get('gradient')
update_range = down_threshold_update[config_name].get('update_range')
b_i = (b_mean - 0.1) // gradient + 1
threshold_param_new = float(threshold_record.get(ad_abtest_tag)) - update_range * b_i
else:
continue
if threshold_param_new > 0:
threshold_record_new[ad_abtest_tag] = threshold_param_new
robot_msg_record.append({'appType': app_type, 'abtestTag': ad_abtest_tag,
'gradient': round(gradient, 4), 'range': round(update_range, 4),
'i': int(b_i),
'paramOld': round(float(threshold_record.get(ad_abtest_tag)), 4),
'paramNew': round(threshold_param_new, 4)})
return threshold_record_new, robot_msg_record
def get_threshold_record_new_by_uv(ad_abtest_abcode_config, feature_df, threshold_record, ad_target_uv):
"""根据广告uv计算新的阈值参数"""
robot_msg_record = []
threshold_record_new = copy.deepcopy(threshold_record)
# 根据目标uv进行调整
for app_type, target_uv_mapping in ad_target_uv.items():
# 获取app_type对应的目标uv
temp_df = feature_df[feature_df['apptype'] == int(app_type)]
# 获取app_type对应的阈值调整参数
update_threshold_params = ad_abtest_abcode_config.get(int(app_type))
ab_test_id = update_threshold_params.get('ab_test_id')
not_update = update_threshold_params.get('not_update')
gradient = update_threshold_params.get('gradient')
max_update_step = update_threshold_params.get('max_update_step')
threshold_update_mapping = update_threshold_params.get('threshold_update')
threshold_record_old = threshold_record.get(ab_test_id)
# print(ab_test_id, threshold_record, threshold_record_old)
for ab_test_group, target_uv in target_uv_mapping.items():
if target_uv is None:
continue
gradient, max_update_step = get_ad_uv_update_config(app_type=app_type, ab_group=ab_test_group)
update_range = threshold_update_mapping.get(ab_test_group)
# 获取对应组的当前uv
try:
current_uv = temp_df[temp_df['分组'] == ab_test_group]['广告uv'].values[0]
except Exception as e:
continue
# 计算uv差值
uv_differ = current_uv - target_uv
if abs(uv_differ) <= not_update:
continue
# 获取当前阈值参数
threshold_param_old = threshold_record_old[ab_test_group].get('group')
if uv_differ < 0:
# 当前uv < 目标uv,阈值按梯度调低(第一个梯度区间:向上取整,之后:四舍五入)
if abs(uv_differ) < gradient:
step = math.ceil(abs(uv_differ) / gradient)
else:
step = round(abs(uv_differ) / gradient)
step = max_update_step if step > max_update_step else step
threshold_param_new = float(threshold_param_old) - update_range * step
elif uv_differ > 0:
# 当前uv > 目标uv,阈值按梯度调高(第一个梯度区间:向上取整,之后:四舍五入)
if uv_differ < gradient:
step = math.ceil(uv_differ / gradient)
else:
step = round(uv_differ / gradient)
step = max_update_step if step > max_update_step else step
threshold_param_new = float(threshold_param_old) + update_range * step
else:
continue
if threshold_param_new <= 0:
threshold_param_new = 0
log_.info(
{
'appType': app_type, 'abtestid': ab_test_id, 'abTestGroup': ab_test_group,
'targetUv': target_uv, 'currentUv': round(current_uv, 4),
'uvDiffer': round(uv_differ, 4), 'gradient': round(gradient, 4), 'step': step,
'range': round(update_range, 4),
'paramOld': round(float(threshold_param_old), 4),
'paramNew': round(threshold_param_new, 4)
}
)
threshold_record_new[ab_test_id][ab_test_group]['group'] = threshold_param_new
threshold_record_new[ab_test_id][ab_test_group]['mean_group'] = threshold_param_new
robot_msg_record.append(
{
'appType': app_type, 'abtestid': ab_test_id, 'abTestGroup': ab_test_group,
'targetUv': target_uv, 'currentUv': round(current_uv, 4),
'uvDiffer': round(uv_differ, 4), 'gradient': round(gradient, 4), 'step': step,
'range': round(update_range, 4),
'paramOld': round(float(threshold_param_old), 4),
'paramNew': round(threshold_param_new, 4)
}
)
return threshold_record_new, robot_msg_record
def update_threshold(threshold_record_old, threshold_record_new):
"""更新阈值"""
# 获取用户组列表
ad_mid_group_list = [group for class_key, group_list in config_.AD_MID_GROUP.items()
for group in group_list]
ad_mid_group_list.append("mean_group")
ad_mid_group_list = list(set(ad_mid_group_list))
# 获取实验配置列表
ad_abtest_config_mapping = {}
abtest_id_list = []
for key, val in config_.AD_ABTEST_CONFIG.items():
abtest_id, abtest_config_tag = key.split('-')
if abtest_id in abtest_id_list:
ad_abtest_config_mapping[abtest_id].append((abtest_config_tag, val))
else:
abtest_id_list.append(abtest_id)
ad_abtest_config_mapping[abtest_id] = [(abtest_config_tag, val)]
log_.info(f"ad_abtest_config_mapping = {ad_abtest_config_mapping}")
# 计算新的阈值并更新
for abtest_id, threshold_param_mapping in threshold_record_new.items():
for abtest_group, threshold_param_new in threshold_param_mapping.items():
threshold_param_old = threshold_record_old[abtest_id].get(abtest_group)
if str(threshold_param_old) == str(threshold_param_new):
# print(abtest_id, abtest_group, threshold_param_old, threshold_param_new)
continue
log_.info(f"abtest_id = {abtest_id}, abtest_group = {abtest_group}, "
f"threshold_param_old = {threshold_param_old}, threshold_param_new = {threshold_param_new}")
for abtest_config_tag, config_val in ad_abtest_config_mapping.get(abtest_id, []):
for group_key in ad_mid_group_list:
# 获取对应的阈值
key_name = \
f"{config_.KEY_NAME_PREFIX_AD_THRESHOLD}{abtest_id}:{abtest_config_tag}:{abtest_group}:{group_key}"
threshold_old = redis_helper.get_data_from_redis(key_name=key_name)
if threshold_old is None:
continue
# 原阈值为0时,加10**(-5)兜底处理
if float(threshold_old) == 0:
threshold_old = float(threshold_old) + 10**(-5)
# 计算新的阈值
if group_key == 'mean_group':
if threshold_param_old['mean_group'] == 0:
threshold_new = \
float(threshold_old) / 10**(-5) * threshold_param_new['mean_group']
else:
threshold_new = \
float(threshold_old) / threshold_param_old['mean_group'] * threshold_param_new['mean_group']
else:
if threshold_param_old['group'] == 0:
threshold_new = \
float(threshold_old) / 10**(-5) * threshold_param_new['group']
else:
threshold_new = \
float(threshold_old) / threshold_param_old['group'] * threshold_param_new['group']
# 更新redis
redis_helper.set_data_to_redis(key_name=key_name, value=threshold_new, expire_time=2 * 24 * 3600)
log_.info(f"abtest_id = {abtest_id}, abtest_config_tag = {abtest_config_tag}, "
f"abtest_group = {abtest_group}, group_key = {group_key}, "
f"threshold_old = {threshold_old}, threshold_new = {threshold_new}")
# 关怀模式实验阈值更新
care_model = config_val.get('care_model', None)
threshold_rate = config_val.get('threshold_rate', None)
if care_model is True:
care_model_key_name = \
f"{config_.KEY_NAME_PREFIX_AD_THRESHOLD_CARE_MODEL}{abtest_id}:{abtest_config_tag}:{abtest_group}:{group_key}"
care_model_threshold_old = redis_helper.get_data_from_redis(key_name=care_model_key_name)
care_model_threshold_new = threshold_new * threshold_rate
redis_helper.set_data_to_redis(key_name=care_model_key_name,
value=care_model_threshold_new, expire_time=2 * 24 * 3600)
log_.info(f"abtest_id = {abtest_id}, abtest_config_tag = {abtest_config_tag}, "
f"abtest_group = {abtest_group}, group_key = {group_key}, "
f"care_model_threshold_old = {care_model_threshold_old}, "
f"care_model_threshold_new = {care_model_threshold_new}")
def update_ad_abtest_threshold(project, table, dt, ad_abtest_abcode_config, ad_target_uv):
# 获取当前阈值参数值
threshold_record = redis_helper.get_data_from_redis(key_name=config_.KEY_NAME_PREFIX_AD_THRESHOLD_RECORD)
threshold_record = eval(threshold_record)
log_.info(f"threshold_record = {threshold_record}")
# 获取uv数据
feature_df = get_feature_data(project=project, table=table, features=features, dt=dt)
feature_df['apptype'] = feature_df['apptype'].astype(int)
feature_df['广告uv'] = feature_df['广告uv'].astype(float)
# 根据广告uv变化计算新的阈值参数
threshold_record_new, robot_msg_record = get_threshold_record_new_by_uv(
ad_abtest_abcode_config=ad_abtest_abcode_config, feature_df=feature_df,
threshold_record=threshold_record, ad_target_uv=ad_target_uv)
log_.info(f"threshold_record_new = {threshold_record_new}")
# 更新阈值
update_threshold(threshold_record_old=threshold_record, threshold_record_new=threshold_record_new)
# 更新阈值参数
redis_helper.set_data_to_redis(key_name=config_.KEY_NAME_PREFIX_AD_THRESHOLD_RECORD,
value=str(threshold_record_new), expire_time=2 * 24 * 3600)
return robot_msg_record
def get_ad_target_uv(now_h):
"""获取管理后台开启自动调整阈值开关的目标uv值"""
ad_target_uv = {}
result = request_get(request_url=config_.GET_AD_TARGET_UV_URL)
if result is None:
log_.info('获取管理后台广告目标uv值失败!')
return ad_target_uv
if result['code'] != 0:
log_.info('获取管理后台广告目标uv值失败!')
return ad_target_uv
if not result['content']:
return ad_target_uv
for item in result['content']:
app_type = item['productId']
target_uv_mapping = {}
target_uv_param = config_.AD_ABTEST_ABCODE_CONFIG.get(int(app_type)).get('target_uv_param', {})
for uv_item in item['uvTargetDetails']:
ab_group = uv_item['abParam']
target_uv = uv_item['uvTarget']
target_uv_param_group = target_uv_param.get(ab_group, None)
if target_uv_param_group is not None:
update_hours = target_uv_param_group.get('update_hours')
update_param = target_uv_param_group.get('update_param')
if now_h in update_hours:
target_uv *= update_param
target_uv_mapping[ab_group] = target_uv
ad_target_uv[app_type] = target_uv_mapping
return ad_target_uv
def get_ad_uv_update_config(app_type, ab_group):
"""获取对应组自动调整阈值参数:梯度,最大步长"""
now_h = datetime.datetime.now().hour
update_threshold_params = config_.AD_ABTEST_ABCODE_CONFIG.get(int(app_type))
gradient = update_threshold_params.get('gradient')
max_update_step = update_threshold_params.get('max_update_step')
target_uv_param = update_threshold_params.get('target_uv_param', {})
target_uv_param_group = target_uv_param.get(ab_group, None)
if target_uv_param_group is not None:
special_update_config = target_uv_param_group.get('special_update_config', None)
if special_update_config is not None:
special_hours = special_update_config.get('special_hours', [])
if now_h in special_hours:
gradient = special_update_config.get('special_gradient')
max_update_step = special_update_config.get('special_max_update_step')
return gradient, max_update_step
def timer_check():
try:
# 获取自动调整阈值参数
ad_abtest_abcode_config = config_.AD_ABTEST_ABCODE_CONFIG
# 自动调整阈值参数存储至redis
redis_helper.set_data_to_redis(key_name=config_.KEY_NAME_PREFIX_AD_THRESHOLD_PARAM_RECORD,
value=str(ad_abtest_abcode_config),
expire_time=24 * 3600)
project = config_.AD_THRESHOLD_AUTO_UPDATE_DATA.get('project')
table = config_.AD_THRESHOLD_AUTO_UPDATE_DATA.get('table')
now_date = datetime.datetime.today()
now_h = datetime.datetime.now().hour
now_min = datetime.datetime.now().minute
log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
# 管理后台获取开启自动调整阈值开关的目标uv值
ad_target_uv = get_ad_target_uv(now_h=now_h)
log_.info(f"ad_target_uv: {ad_target_uv}")
if len(ad_target_uv) == 0:
return
# 查看当前更新的数据是否已准备好
dt = datetime.datetime.strftime(now_date - datetime.timedelta(hours=1), '%Y%m%d%H')
data_count = data_check(project=project, table=table, dt=dt)
if data_count > 0:
log_.info(f"data count = {data_count}")
# 数据准备好,进行更新
robot_msg_record = update_ad_abtest_threshold(
project=project, table=table, dt=dt,
ad_abtest_abcode_config=ad_abtest_abcode_config, ad_target_uv=ad_target_uv)
if len(robot_msg_record) > 0:
robot_msg_record_text = "\n".join([str(item) for item in robot_msg_record])
msg = f"threshold_param_update: \n{robot_msg_record_text.replace(', ', ', ')}\n"
else:
msg = "无需更新!\n"
send_msg_to_feishu(
webhook=config_.FEISHU_ROBOT['ad_threshold_auto_update_robot'].get('webhook'),
key_word=config_.FEISHU_ROBOT['ad_threshold_auto_update_robot'].get('key_word'),
msg_text=f"rov-offline{config_.ENV_TEXT} - 阈值更新完成!\n{msg}"
)
log_.info(f"threshold update end!")
elif now_min > 30:
log_.info('threshold update data is None!')
send_msg_to_feishu(
webhook=config_.FEISHU_ROBOT['ad_threshold_auto_update_robot'].get('webhook'),
key_word=config_.FEISHU_ROBOT['ad_threshold_auto_update_robot'].get('key_word'),
msg_text=f"rov-offline{config_.ENV_TEXT} - 阈值更新相关数据未准备好!\n"
)
else:
# 数据没准备好,1分钟后重新检查
Timer(60, timer_check).start()
except Exception as e:
log_.error(f"阈值更新失败, exception: {e}, traceback: {traceback.format_exc()}")
send_msg_to_feishu(
webhook=config_.FEISHU_ROBOT['ad_threshold_auto_update_robot'].get('webhook'),
key_word=config_.FEISHU_ROBOT['ad_threshold_auto_update_robot'].get('key_word'),
msg_text=f"rov-offline{config_.ENV_TEXT} - 阈值更新失败\n"
f"exception: {e}\n"
f"traceback: {traceback.format_exc()}"
)
if __name__ == '__main__':
timer_check()