import datetime
import traceback
import multiprocessing
from threading import Timer
from utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu, send_msg_to_feishu_new
from config import set_config
from log import Log
config_, _ = set_config()
log_ = Log()
redis_helper = RedisHelper()
features = [
'apptype',
'videoid',
'sharerate_all',
'sharerate_ad'
]
features_new = [
'apptype',
'videoid',
'adrate',
'sharerate',
'adrate_share'
]
features_with_out = [
'apptype',
'videoid',
'adrate', # 出广告的概率
'outrate', # 被直接跳出的概率
'adrate_out' # 被直接跳出时出广告的概率
]
def get_top10_abnormal_videos_return(dt, filter_param):
"""获取昨日各端top10中的异常视频(裂变视频)"""
abnormal_video_project = config_.ad_model_data['top10_videos'].get('project')
abnormal_video_table = config_.ad_model_data['top10_videos'].get('table')
abnormal_video_features = [
'apptype', 'videoid', 'yesterday_return', 'rank', 'multiple'
]
data_count = data_check(project=abnormal_video_project, table=abnormal_video_table, dt=dt)
top10_abnormal_videos = {}
if data_count > 0:
abnormal_video_df = get_feature_data(project=abnormal_video_project, table=abnormal_video_table,
features=abnormal_video_features, dt=dt)
abnormal_video_df['multiple'].fillna(0, inplace=True)
abnormal_video_df['apptype'] = abnormal_video_df['apptype'].astype(int)
abnormal_video_df['videoid'] = abnormal_video_df['videoid'].astype(int)
abnormal_video_df['yesterday_return'] = abnormal_video_df['yesterday_return'].astype(int)
abnormal_video_df['rank'] = abnormal_video_df['rank'].astype(int)
abnormal_video_df['multiple'] = abnormal_video_df['multiple'].astype(float)
app_type_list = list(set(abnormal_video_df['apptype'].tolist()))
for app_type in app_type_list:
app_type_df = abnormal_video_df[abnormal_video_df['apptype'] == app_type]
app_type_df = app_type_df.sort_values(by=['rank'], ascending=True)
# print(app_type_df)
temp_video_id_list = []
for index, item in app_type_df.iterrows():
# print(item['rank'], item['videoid'], item['multiple'])
if item['multiple'] > filter_param:
# print(item['videoid'], item['multiple'])
abnormal_video_id_list = temp_video_id_list.copy()
abnormal_video_id_list.append(int(item['videoid']))
top10_abnormal_videos[app_type] = abnormal_video_id_list
temp_video_id_list.append(int(item['videoid']))
else:
temp_video_id_list.append(int(item['videoid']))
# print(top10_abnormal_videos)
log_.info(f"top10_abnormal_videos = {top10_abnormal_videos}")
return top10_abnormal_videos
def predict_video_share_rate(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
"""预估视频有广告时分享率"""
# 获取对应的视频特征
video_df = video_initial_df.copy()
video_df['apptype'] = video_df['apptype'].astype(int)
video_df = video_df[video_df['apptype'] == int(data_param)]
log_.info(f"video_df length: {len(video_df)}")
video_df['sharerate_all'].fillna(0, inplace=True)
video_df['sharerate_ad'].fillna(0, inplace=True)
video_df['sharerate_all'] = video_df['sharerate_all'].astype(float)
video_df['sharerate_ad'] = video_df['sharerate_ad'].astype(float)
# 获取有广告时所有视频近30天的分享率
ad_all_videos_share_rate = video_df[video_df['videoid'] == 'allvideos']['sharerate_ad'].values[0]
video_df = video_df[video_df['videoid'] != 'allvideos']
# 剔除异常视频数据
video_df['videoid'] = video_df['videoid'].astype(int)
top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
# print(int(data_param), len(video_df), top10_abnormal_video_ids)
if top10_abnormal_video_ids is not None:
video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
# print(len(video_df))
# 计算视频有广告时分享率
video_df['video_ad_share_rate'] = \
video_df['sharerate_ad'] * float(ad_all_videos_share_rate) / video_df['sharerate_all']
video_df['video_ad_share_rate'].fillna(0, inplace=True)
# log_.info(f"video_df: {video_df}")
video_df = video_df[video_df['video_ad_share_rate'] != 0]
log_.info(f"video_df filtered 0 length: {len(video_df)}")
# 结果写入redis
key_name = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{data_key}:{dt}"
redis_data = {}
for index, item in video_df.iterrows():
redis_data[int(item['videoid'])] = item['video_ad_share_rate']
group_ad_share_rate_mean = video_df['video_ad_share_rate'].mean()
redis_data[-1] = group_ad_share_rate_mean
# 异常视频给定值:mean/3
if top10_abnormal_video_ids is not None:
abnormal_video_param = config_.AD_ABNORMAL_VIDEOS_PARAM.get(data_key, 1)
print(data_key, data_param, abnormal_video_param)
for abnormal_video_id in top10_abnormal_video_ids:
print(abnormal_video_id, group_ad_share_rate_mean, group_ad_share_rate_mean * abnormal_video_param)
redis_data[int(abnormal_video_id)] = group_ad_share_rate_mean * abnormal_video_param
log_.info(f"redis_data count: {len(redis_data)}")
if len(redis_data) > 0:
redis_helper = RedisHelper()
redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
return video_df
def update_videos_data(project, table, dt, update_params, top10_abnormal_videos):
"""预估视频有广告时分享率"""
# 获取视频特征
video_initial_df = get_feature_data(project=project, table=table, features=features, dt=dt)
for data_key, data_param in update_params.items():
log_.info(f"data_key = {data_key} update start...")
predict_video_share_rate(video_initial_df=video_initial_df, dt=dt, data_key=data_key, data_param=data_param,
top10_abnormal_videos=top10_abnormal_videos)
log_.info(f"data_key = {data_key} update end!")
def predict_video_share_rate_new(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
"""预估视频有广告时被分享率"""
# 获取对应的视频特征
video_df = video_initial_df.copy()
video_df['apptype'] = video_df['apptype'].astype(int)
video_df = video_df[video_df['apptype'] == int(data_param)]
log_.info(f"video_df length: {len(video_df)}")
video_df['adrate'].fillna(0, inplace=True)
video_df['sharerate'].fillna(0, inplace=True)
video_df['adrate_share'].fillna(0, inplace=True)
video_df['adrate'] = video_df['adrate'].astype(float)
video_df['sharerate'] = video_df['sharerate'].astype(float)
video_df['adrate_share'] = video_df['adrate_share'].astype(float)
# 剔除异常视频数据
video_df['videoid'] = video_df['videoid'].astype(int)
top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
# print(int(data_param), len(video_df), top10_abnormal_video_ids)
if top10_abnormal_video_ids is not None:
video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
# print(len(video_df))
# 计算视频有广告时被分享率
video_df = video_df[video_df['adrate'] != 0]
video_df['video_ad_share_rate'] = \
video_df['adrate_share'] * video_df['sharerate'] / video_df['adrate']
video_df['video_ad_share_rate'].fillna(0, inplace=True)
# log_.info(f"video_df: {video_df}")
video_df = video_df[video_df['video_ad_share_rate'] != 0]
log_.info(f"video_df filtered 0 length: {len(video_df)}")
# 结果写入redis
key_name = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{data_key}:{dt}"
redis_data = {}
for index, item in video_df.iterrows():
redis_data[int(item['videoid'])] = item['video_ad_share_rate']
group_ad_share_rate_mean = video_df['video_ad_share_rate'].mean()
redis_data[-1] = group_ad_share_rate_mean
# 异常视频给定值:mean/3
if top10_abnormal_video_ids is not None:
abnormal_video_param = config_.AD_ABNORMAL_VIDEOS_PARAM.get(data_key, 1)
print(data_key, data_param, abnormal_video_param)
for abnormal_video_id in top10_abnormal_video_ids:
print(abnormal_video_id, group_ad_share_rate_mean, group_ad_share_rate_mean * abnormal_video_param)
redis_data[int(abnormal_video_id)] = group_ad_share_rate_mean * abnormal_video_param
log_.info(f"redis_data count: {len(redis_data)}")
if len(redis_data) > 0:
redis_helper = RedisHelper()
redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
return video_df
def update_videos_data_new(project, table, dt, update_params, top10_abnormal_videos):
"""预估视频有广告时分享率"""
# 获取视频特征
video_initial_df = get_feature_data(project=project, table=table, features=features_new, dt=dt)
for data_key, data_param in update_params.items():
log_.info(f"data_key = {data_key} update start...")
predict_video_share_rate_new(video_initial_df=video_initial_df, dt=dt, data_key=data_key,
data_param=data_param, top10_abnormal_videos=top10_abnormal_videos)
log_.info(f"data_key = {data_key} update end!")
def predict_video_out_rate(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
"""预估视频有广告时不被直接跳出的概率"""
# 获取对应的视频特征
video_df = video_initial_df.copy()
video_df['apptype'] = video_df['apptype'].astype(int)
video_df = video_df[video_df['apptype'] == int(data_param)]
log_.info(f"video_df length: {len(video_df)}")
video_df['adrate'].fillna(0, inplace=True)
video_df['outrate'].fillna(0, inplace=True)
video_df['adrate_out'].fillna(0, inplace=True)
video_df['adrate'] = video_df['adrate'].astype(float)
video_df['outrate'] = video_df['outrate'].astype(float)
video_df['adrate_out'] = video_df['adrate_out'].astype(float)
# 剔除异常视频数据
video_df['videoid'] = video_df['videoid'].astype(int)
top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
# print(int(data_param), len(video_df), top10_abnormal_video_ids)
if top10_abnormal_video_ids is not None:
video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
# print(len(video_df))
# 计算视频有广告时被直接跳出的概率
video_df = video_df[video_df['adrate'] != 0]
video_df = video_df[video_df['adrate_out'] != 0]
video_df['video_ad_out_rate'] = \
video_df['adrate_out'] * video_df['outrate'] / video_df['adrate']
video_df['video_ad_out_rate'].fillna(0, inplace=True)
# 计算视频有广告时不被直接跳出的概率
video_df['video_ad_no_out_rate'] = 1 - video_df['video_ad_out_rate']
# print(len(video_df))
# video_df = video_df[video_df['video_ad_no_out_rate'] != 0]
# log_.info(f"video_df: {video_df}")
log_.info(f"video_df filtered 0 length: {len(video_df)}")
# video_df = video_df[video_df['video_ad_no_out_rate'] != 1]
# log_.info(f"video_df: {video_df}")
# log_.info(f"video_df filtered 0 length: {len(video_df)}")
# 结果写入redis
key_name = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{data_key}:{dt}"
redis_data = {}
for index, item in video_df.iterrows():
redis_data[int(item['videoid'])] = item['video_ad_no_out_rate']
group_ad_out_rate_mean = video_df['video_ad_no_out_rate'].mean()
redis_data[-1] = group_ad_out_rate_mean
# 异常视频给定值:mean/3
if top10_abnormal_video_ids is not None:
abnormal_video_param = config_.AD_ABNORMAL_VIDEOS_PARAM.get(data_key, 1)
print(data_key, data_param, abnormal_video_param)
for abnormal_video_id in top10_abnormal_video_ids:
print(abnormal_video_id, group_ad_out_rate_mean, group_ad_out_rate_mean * abnormal_video_param)
redis_data[int(abnormal_video_id)] = group_ad_out_rate_mean * abnormal_video_param
log_.info(f"redis_data count: {len(redis_data)}")
if len(redis_data) > 0:
redis_helper = RedisHelper()
redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
return video_df
def update_videos_data_with_out(project, table, dt, update_params, top10_abnormal_videos):
"""预估视频有广告时被直接跳出的概率"""
# 获取视频特征
video_initial_df = get_feature_data(project=project, table=table, features=features_with_out, dt=dt)
for data_key, data_param in update_params.items():
log_.info(f"data_key = {data_key} update start...")
predict_video_out_rate(video_initial_df=video_initial_df, dt=dt, data_key=data_key,
data_param=data_param, top10_abnormal_videos=top10_abnormal_videos)
log_.info(f"data_key = {data_key} update end!")
def timer_check(dt, video_key, video_params, top10_abnormal_videos):
log_.info(f"video_key = {video_key}")
project = config_.ad_model_data[video_key].get('project')
table = config_.ad_model_data[video_key].get('table')
# 查看当前更新的数据是否已准备好
data_count = data_check(project=project, table=table, dt=dt)
if data_count > 0:
log_.info(f"ad video data count = {data_count}")
# 数据准备好,进行更新
if video_key == 'videos_data_alladtype':
update_videos_data_new(project=project, table=table, dt=dt, update_params=video_params,
top10_abnormal_videos=top10_abnormal_videos)
elif video_key == 'videos_data_with_out_alladtype':
update_videos_data_with_out(project=project, table=table, dt=dt, update_params=video_params,
top10_abnormal_videos=top10_abnormal_videos)
else:
update_videos_data(project=project, table=table, dt=dt, update_params=video_params,
top10_abnormal_videos=top10_abnormal_videos)
log_.info(f"video_key = {video_key} ad video data update end!")
msg_list = [
f"env: rov-offline {config_.ENV_TEXT}",
f"video_key: {video_key}",
f"now_date: {dt}",
f"finished time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
]
send_msg_to_feishu_new(
webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
title='广告模型视频分享率预测数据更新完成',
msg_list=msg_list
)
else:
# 数据没准备好,1分钟后重新检查
Timer(60, timer_check, args=[dt, video_key, video_params, top10_abnormal_videos]).start()
def main():
try:
now_date = datetime.datetime.today()
dt = datetime.datetime.strftime(now_date, '%Y%m%d')
log_.info(f"now_date: {dt}")
# 获取昨天top10中的异常视频(裂变视频)
# top10_abnormal_videos = get_top10_abnormal_videos_return(
# dt=dt, filter_param=config_.ad_model_data['top10_videos'].get('abnormal_filter_param')
# )
# 暂停1.5倍回流视频减少广告策略
top10_abnormal_videos = {}
update_params = config_.AD_VIDEO_DATA_PARAMS
pool = multiprocessing.Pool(processes=len(update_params))
for video_key, video_params in update_params.items():
pool.apply_async(
func=timer_check,
args=(dt, video_key, video_params, top10_abnormal_videos)
)
pool.close()
pool.join()
# for video_key, video_params in update_params.items():
# timer_check(dt, video_key, video_params, top10_abnormal_videos)
except Exception as e:
log_.error(f"视频分享率预测数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
msg_list = [
f"env: rov-offline {config_.ENV_TEXT}",
f"now time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
f"exception: {e}",
f"traceback: {traceback.format_exc()}",
]
send_msg_to_feishu_new(
webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
title='广告模型视频分享率预测数据更新失败',
msg_list=msg_list
)
if __name__ == '__main__':
# timer_check()
main()