# 对训练数据的分布进行监控
import numpy as np
import pandas as pd
import datetime
from config import set_config
from rov_train import process_data, process_predict_data
from utils import send_msg_to_feishu
config_, env = set_config()
def get_feature_distribution(feature_name, feature_data):
statistical_results = {'feature_name': feature_name}
feature_data = np.array(feature_data)
feature_data_sorted = sorted(feature_data)
length = len(feature_data_sorted)
count_0 = len([item for item in feature_data_sorted if item == 0])
print('data_count = {}, count_0 = {}, rate_0 = {}'.format(length, count_0, count_0/length))
statistical_results['data_count'] = length
statistical_results['0_count'] = count_0
statistical_results['0_rate'] = count_0/length
# 整体数据分布
for percentile in [0.25, 0.5, 0.75, 1]:
data_count = int(length * percentile)
data = feature_data_sorted[:data_count + 1]
data_mean = np.mean(data)
data_var = np.var(data)
data_std = np.std(data)
# print('percentile = {}, data_count = {}, mean = {}, var = {}, std = {}'.format(
# percentile, data_count, data_mean, data_var, data_std))
statistical_results['mean_{}'.format(percentile)] = data_mean
statistical_results['var_{}'.format(percentile)] = data_var
statistical_results['std_{}'.format(percentile)] = data_std
# 非零数据分布
data_non_zero = [item for item in feature_data_sorted if item != 0]
for percentile in [0.25, 0.5, 0.75, 1]:
data_count = int(len(data_non_zero) * percentile)
data = data_non_zero[:data_count + 1]
data_mean = np.mean(data)
data_var = np.var(data)
data_std = np.std(data)
# print('percentile = {}, data_count = {}, mean = {}, var = {}, std = {}'.format(
# percentile, data_count, data_mean, data_var, dat_std))
statistical_results['non_zero_mean_{}'.format(percentile)] = data_mean
statistical_results['non_zero_var_{}'.format(percentile)] = data_var
statistical_results['non_zero_std_{}'.format(percentile)] = data_std
return statistical_results
def all_feature_distribution(data, file):
res = []
columns = [
'feature_name', 'data_count', '0_count', '0_rate',
'mean_0.25', 'mean_0.5', 'mean_0.75', 'mean_1',
'var_0.25', 'var_0.5', 'var_0.75', 'var_1',
'std_0.25', 'std_0.5', 'std_0.75', 'std_1',
'non_zero_mean_0.25', 'non_zero_mean_0.5', 'non_zero_mean_0.75', 'non_zero_mean_1',
'non_zero_var_0.25', 'non_zero_var_0.5', 'non_zero_var_0.75', 'non_zero_var_1',
'non_zero_std_0.25', 'non_zero_std_0.5', 'non_zero_std_0.75', 'non_zero_std_1'
]
feature_importance = pd.read_csv('data/model_feature_importance.csv')
feature_name_list = list(feature_importance['feature'])
for feature_name in feature_name_list:
print(feature_name)
feature_data = data[feature_name]
statistical_results = get_feature_distribution(feature_name=feature_name, feature_data=feature_data)
res.append(statistical_results)
df = pd.DataFrame(res, columns=columns)
df.to_csv(file)
def cal_diff(base_data_file, compare_data_file, feature_top=-1):
"""
计算数据偏移量,并对超过指定指标的特征进行飞书报警
:param base_data_file: 对比的基准数据文件路径
:param compare_data_file: 需对比的数据文件路径
:param feature_top: 根据特征重要性排序获取的特征top,默认:-1,所有特征
:return: 偏移量超过指定指标的特征以及对应的偏移量
"""
df_init_base = pd.read_csv(base_data_file, index_col='feature_name')
df_init_compare = pd.read_csv(compare_data_file, index_col='feature_name')
# 计算特征数据偏移量
feature_top_compare = df_init_compare.index.values[:feature_top]
# 需观测的指标
monitor_list = [
'0_rate',
'mean_1', 'var_1',
'non_zero_mean_0.25', 'non_zero_mean_0.5', 'non_zero_mean_0.75', 'non_zero_mean_1',
'non_zero_var_0.25', 'non_zero_var_0.5', 'non_zero_var_0.75', 'non_zero_var_1'
]
df_base = df_init_base.loc[feature_top_compare, monitor_list]
df_compare = df_init_compare.loc[feature_top_compare, monitor_list]
df_diff = abs(df_compare - df_base) / abs(df_base)
# 获取偏移超过 10% 的特征及对应的偏移量
offset_feature_list = []
for column in df_diff.columns.to_list():
df_temp = df_diff.loc[df_diff[column] >= 0.1]
if not df_temp.empty:
offset_feature_list.append(df_temp)
if len(offset_feature_list) == 0:
return None
df_offset = pd.concat(offset_feature_list)
# 去重
df_offset.drop_duplicates(inplace=True)
return df_offset
def main():
now_date = datetime.datetime.strftime(datetime.datetime.today(), '%Y%m%d')
# now_date = '20220119'
# 训练数据
print('train data monitor...')
train_data_file = 'data/train_data_monitor_{}.csv'.format(now_date)
train_filename = config_.TRAIN_DATA_FILENAME
train_x, train_y, videos, fea = process_data(filename=train_filename)
all_feature_distribution(train_x, file=train_data_file)
# 预测数据
print('predict data monitor...')
predict_data_file = 'data/predict_data_monitor_{}.csv'.format(now_date)
predict_filename = config_.PREDICT_DATA_FILENAME
predict_x, video_ids = process_predict_data(filename=predict_filename)
all_feature_distribution(predict_x, file=predict_data_file)
# 数据偏移监控
print('calculate offset...')
webhook = config_.FEISHU_ROBOT['feature_monitor_robot'].get('webhook')
key_word = config_.FEISHU_ROBOT['feature_monitor_robot'].get('key_word')
# 训练数据特征与前一天对比
yesterday_date = datetime.datetime.strftime(
datetime.datetime.today() - datetime.timedelta(days=1),
'%Y%m%d'
)
train_data_yesterday_file = 'data/train_data_monitor_{}.csv'.format(yesterday_date)
df_offset_train = cal_diff(base_data_file=train_data_yesterday_file,
compare_data_file=train_data_file)
if df_offset_train is not None:
msg_text = '\ndate: {} \ntag: train_offset \n{}'.format(now_date, df_offset_train)
send_msg_to_feishu(webhook=webhook, key_word=key_word, msg_text=msg_text)
# 预测数据特征与前一天对比
predict_data_yesterday_file = 'data/predict_data_monitor_{}.csv'.format(yesterday_date)
df_offset_predict = cal_diff(base_data_file=predict_data_yesterday_file,
compare_data_file=predict_data_file)
if df_offset_predict is not None:
msg_text = '\ndate: {} \ntag: predict_offset \n{}'.format(now_date, df_offset_predict)
send_msg_to_feishu(webhook=webhook, key_word=key_word, msg_text=msg_text)
# 当天预测数据特征与训练数据特征对比
df_offset_predict_train = cal_diff(base_data_file=train_data_file, compare_data_file=predict_data_file)
if df_offset_predict_train is not None:
msg_text = '\ndate: {} \ntag: predict_train_offset \n{}'.format(now_date, df_offset_predict_train)
send_msg_to_feishu(webhook=webhook, key_word=key_word, msg_text=msg_text)
if __name__ == '__main__':
main()