import pandas as pd import math from odps import ODPS from threading import Timer from datetime import datetime, timedelta from get_data import get_data_from_odps from db_helper import RedisHelper from utils import filter_video_status from config import set_config from log import Log config_, _ = set_config() log_ = Log() features = [ 'videoid', 'preview人数', # 过去24h预曝光人数 'view人数', # 过去24h曝光人数 'play人数', # 过去24h播放人数 'share人数', # 过去24h分享人数 '回流人数', # 过去24h分享,过去24h回流人数 'preview次数', # 过去24h预曝光次数 'view次数', # 过去24h曝光次数 'play次数', # 过去24h播放次数 'share次数', # 过去24h分享次数 'platform_return', 'platform_preview', 'platform_preview_total', 'platform_show', 'platform_show_total', 'platform_view', 'platform_view_total', ] def get_rov_redis_key(now_date): # 获取rov模型结果存放key redis_helper = RedisHelper() now_dt = datetime.strftime(now_date, '%Y%m%d') key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}' if not redis_helper.key_exists(key_name=key_name): pre_dt = datetime.strftime(now_date - timedelta(days=1), '%Y%m%d') key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}' return key_name def h_data_check(project, table, now_date, now_h): """检查数据是否准备好""" odps = ODPS( access_id=config_.ODPS_CONFIG['ACCESSID'], secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'], project=project, endpoint=config_.ODPS_CONFIG['ENDPOINT'], connect_timeout=3000, read_timeout=500000, pool_maxsize=1000, pool_connections=1000 ) try: # 23点开始到8点之前(不含8点),全部用22点生成那个列表 if now_h == 23: dt = datetime.strftime(now_date - timedelta(hours=1), '%Y%m%d%H') elif now_h < 8: dt = f"{datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')}22" else: dt = datetime.strftime(now_date, '%Y%m%d%H') sql = f'select * from {project}.{table} where dt = {dt}' with odps.execute_sql(sql=sql).open_reader() as reader: data_count = reader.count except Exception as e: data_count = 0 return data_count def get_feature_data(now_date, now_h, project, table): """获取特征数据""" # 23点开始到8点之前(不含8点),全部用22点生成那个列表 if now_h == 23: dt = datetime.strftime(now_date - timedelta(hours=1), '%Y%m%d%H') elif now_h < 8: dt = f"{datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')}22" else: dt = datetime.strftime(now_date, '%Y%m%d%H') log_.info({'feature_dt': dt}) # dt = '20220425' records = get_data_from_odps(date=dt, project=project, table=table) feature_data = [] for record in records: item = {} for feature_name in features: item[feature_name] = record[feature_name] feature_data.append(item) feature_df = pd.DataFrame(feature_data) return feature_df def cal_score1(df): # score1计算公式: score = 回流人数/(view人数+10000) df = df.fillna(0) df['score'] = df['回流人数'] / (df['view人数'] + 1000) df = df.sort_values(by=['score'], ascending=False) return df def cal_score2(df): # score2计算公式: score = share次数/(view+1000)+0.01*return/(share次数+100) df = df.fillna(0) df['share_rate'] = df['share次数'] / (df['view人数'] + 1000) df['back_rate'] = df['回流人数'] / (df['share次数'] + 100) df['score'] = df['share_rate'] + 0.01 * df['back_rate'] df['platform_return_rate'] = df['platform_return'] / df['回流人数'] df = df.sort_values(by=['score'], ascending=False) return df def video_rank_h(df, now_date, now_h, rule_key, param): """ 获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并 :param df: :param now_date: :param now_h: :param rule_key: 天级规则数据进入条件 :param param: 天级规则数据进入条件参数 :return: """ # 获取rov模型结果 redis_helper = RedisHelper() key_name = get_rov_redis_key(now_date=now_date) initial_data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=-1, with_scores=True) log_.info(f'initial data count = {len(initial_data)}') # 获取符合进入召回源条件的视频 return_count = param.get('return_count') if return_count: day_recall_df = df[df['回流人数'] > return_count] else: day_recall_df = df platform_return_rate = param.get('platform_return_rate', 0) day_recall_df = day_recall_df[day_recall_df['platform_return_rate'] > platform_return_rate] # videoid重复时,保留分值高 day_recall_df = day_recall_df.sort_values(by=['score'], ascending=False) day_recall_df = day_recall_df.drop_duplicates(subset=['videoid'], keep='first') day_recall_df['videoid'] = day_recall_df['videoid'].astype(int) day_recall_videos = day_recall_df['videoid'].to_list() log_.info(f'h_by24h_recall videos count = {len(day_recall_videos)}') # 视频状态过滤 filtered_videos = filter_video_status(day_recall_videos) log_.info('filtered_videos count = {}'.format(len(filtered_videos))) # 写入对应的redis now_dt = datetime.strftime(now_date, '%Y%m%d') day_video_ids = [] day_recall_result = {} for video_id in filtered_videos: score = day_recall_df[day_recall_df['videoid'] == video_id]['score'] day_recall_result[int(video_id)] = float(score) day_video_ids.append(int(video_id)) day_recall_key_name = \ f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}{rule_key}.{now_dt}.{now_h}" if len(day_recall_result) > 0: redis_helper.add_data_with_zset(key_name=day_recall_key_name, data=day_recall_result, expire_time=23 * 3600) # 清空线上过滤应用列表 redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER_24H}{rule_key}") # 去重更新rov模型结果,并另存为redis中 initial_data_dup = {} for video_id, score in initial_data: if int(video_id) not in day_video_ids: initial_data_dup[int(video_id)] = score log_.info(f"initial data dup count = {len(initial_data_dup)}") initial_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_DUP_24H}{rule_key}.{now_dt}.{now_h}" if len(initial_data_dup) > 0: redis_helper.add_data_with_zset(key_name=initial_key_name, data=initial_data_dup, expire_time=23 * 3600) def rank_by_h(now_date, now_h, rule_params, project, table): # 获取特征数据 feature_df = get_feature_data(now_date=now_date, now_h=now_h, project=project, table=table) # rank for key, value in rule_params.items(): log_.info(f"rule = {key}, param = {value}") # 计算score cal_score_func = value.get('cal_score_func', 1) if cal_score_func == 2: score_df = cal_score2(df=feature_df) else: score_df = cal_score1(df=feature_df) video_rank_h(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value) # to-csv score_filename = f"score_by24h_{key}_{datetime.strftime(now_date, '%Y%m%d%H')}.csv" score_df.to_csv(f'./data/{score_filename}') # to-logs log_.info({"date": datetime.strftime(now_date, '%Y%m%d%H'), "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_BY_24H, "rule_key": key, "score_df": score_df[['videoid', 'score']]}) def h_rank_bottom(now_date, now_h, rule_key): """未按时更新数据,用模型召回数据作为当前的数据""" log_.info(f"rule_key = {rule_key}") # 获取rov模型结果 redis_helper = RedisHelper() if now_h == 0: redis_dt = datetime.strftime(now_date - timedelta(days=1), '%Y%m%d') redis_h = 23 else: redis_dt = datetime.strftime(now_date, '%Y%m%d') redis_h = now_h - 1 key_prefix_list = [config_.RECALL_KEY_NAME_PREFIX_BY_24H, config_.RECALL_KEY_NAME_PREFIX_DUP_24H] for key_prefix in key_prefix_list: key_name = f"{key_prefix}{rule_key}.{redis_dt}.{redis_h}" initial_data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=-1, with_scores=True) final_data = dict() for video_id, score in initial_data: final_data[video_id] = score # 存入对应的redis final_key_name = \ f"{key_prefix}{rule_key}.{datetime.strftime(now_date, '%Y%m%d')}.{now_h}" if len(final_data) > 0: redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600) # 清空线上过滤应用列表 redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER_24H}{rule_key}") def h_timer_check(): project = config_.PROJECT_24H table = config_.TABLE_24H rule_params = config_.RULE_PARAMS_24H now_date = datetime.today() log_.info(f"now_date: {datetime.strftime(now_date, '%Y%m%d%H')}") now_min = datetime.now().minute now_h = datetime.now().hour # 查看当前天级更新的数据是否已准备好 h_data_count = h_data_check(project=project, table=table, now_date=now_date, now_h=now_h) if h_data_count > 0: log_.info(f'h_by24h_data_count = {h_data_count}') # 数据准备好,进行更新 rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params, project=project, table=table) elif now_min > 50: log_.info('h_by24h_recall data is None!') for key, _ in rule_params.items(): h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key) else: # 数据没准备好,1分钟后重新检查 Timer(60, h_timer_check).start() if __name__ == '__main__': h_timer_check()