# -*- coding: utf-8 -*- import multiprocessing import traceback import gevent import datetime import pandas as pd import math from functools import reduce from odps import ODPS from threading import Timer from my_utils import MysqlHelper, RedisHelper, get_data_from_odps, filter_video_status, filter_shield_video, \ check_table_partition_exits, filter_video_status_app, send_msg_to_feishu, filter_political_videos from my_config import set_config from log import Log from check_video_limit_distribute import update_limit_video_score config_, _ = set_config() log_ = Log() region_code = config_.REGION_CODE RULE_PARAMS = { 'rule_params': { 'rule66': { 'view_type': 'video-show-region', 'platform_return_rate': 0.001, 'region_24h_rule_key': 'rule66', '24h_rule_key': 'rule66' }, 'rule67': { 'view_type': 'video-show-region', 'platform_return_rate': 0.001, 'region_24h_rule_key': 'rule66', '24h_rule_key': 'rule66', 'h_rule_key': 'rule66' }, 'rule68': { 'view_type': 'video-show-region', 'platform_return_rate': 0.001, 'region_24h_rule_key': 'rule66', '24h_rule_key': 'rule66', 'score_func': 'back_rate_exponential_weighting1' }, }, 'data_params': config_.DATA_PARAMS, 'params_list': [ # 532 # {'data': 'data66', 'rule': 'rule66'}, # 523-> 523 & 518 # {'data': 'data66', 'rule': 'rule67'}, # 523->510 # {'data': 'data66', 'rule': 'rule68'}, # 523->514 # {'data': 'data66', 'rule': 'rule69'}, # 523->518 ], } features = [ 'apptype', 'code', 'videoid', 'lastonehour_preview', # 过去1小时预曝光人数 - 区分地域 'lastonehour_view', # 过去1小时曝光人数 - 区分地域 'lastonehour_play', # 过去1小时播放人数 - 区分地域 'lastonehour_share', # 过去1小时分享人数 - 区分地域 'lastonehour_return', # 过去1小时分享,过去1小时回流人数 - 区分地域 'lastonehour_preview_total', # 过去1小时预曝光次数 - 区分地域 'lastonehour_view_total', # 过去1小时曝光次数 - 区分地域 'lastonehour_play_total', # 过去1小时播放次数 - 区分地域 'lastonehour_share_total', # 过去1小时分享次数 - 区分地域 'platform_return', 'lastonehour_show', # 不区分地域 'lastonehour_show_region', # 地域分组 'lasttwohour_share', # h-2小时分享人数 'lasttwohour_return_now', # h-2分享,过去1小时回流人数 'lasttwohour_return', # h-2分享,h-2回流人数 'lastthreehour_share', # h-3小时分享人数 'lastthreehour_return_now', # h-3分享,过去1小时回流人数 'lastthreehour_return', # h-3分享,h-3回流人数 'lastonehour_return_new', # 过去1小时分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域) 'lasttwohour_return_now_new', # h-2分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域) 'lasttwohour_return_new', # h-2分享,h-2回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域) 'lastthreehour_return_now_new', # h-3分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域) 'lastthreehour_return_new', # h-3分享,h-3回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域) 'platform_return_new', # 平台分发回流(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域) ] def merge_df(df_left, df_right): """ df按照videoid, code 合并,对应特征求和 :param df_left: :param df_right: :return: """ df_merged = pd.merge(df_left, df_right, on=['videoid', 'code'], how='outer', suffixes=['_x', '_y']) df_merged.fillna(0, inplace=True) feature_list = ['videoid', 'code'] for feature in features: if feature in ['apptype', 'videoid', 'code']: continue df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y'] feature_list.append(feature) return df_merged[feature_list] def video_rank(df, now_date, now_h, rule_key, param, region, data_key): """ 获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并 :param df: :param now_date: :param now_h: :param rule_key: 小时级数据进入条件 :param param: 小时级数据进入条件参数 :param region: 所属地域 :return: """ redis_helper = RedisHelper() # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005 return_count = param.get('return_count', 1) score_value = param.get('score_rule', 0) platform_return_rate = param.get('platform_return_rate', 0) h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value) & (df['platform_return_rate'] >= platform_return_rate)] # videoid重复时,保留分值高 h_recall_df = h_recall_df.sort_values(by=['score'], ascending=False) h_recall_df = h_recall_df.drop_duplicates(subset=['videoid'], keep='first') h_recall_df['videoid'] = h_recall_df['videoid'].astype(int) log_.info(f"各种规则过滤后,一共有多少个视频 = {len(h_recall_df)}") h_recall_videos = h_recall_df['videoid'].to_list() log_.info(f"各种规则增加后,一共有多少个视频 = {len(h_recall_videos)}") # 视频状态过滤 filtered_videos = filter_video_status(h_recall_videos) # 屏蔽视频过滤 shield_config = param.get('shield_config', config_.SHIELD_CONFIG) shield_key_name_list = shield_config.get(region, None) if shield_key_name_list is not None: filtered_videos = filter_shield_video(video_ids=filtered_videos, shield_key_name_list=shield_key_name_list) # 涉政视频过滤 political_filter = param.get('political_filter', None) if political_filter is True: filtered_videos = filter_political_videos(video_ids=filtered_videos) log_.info(f"视频状态-涉政等-过滤后,一共有多少个视频 = {len(filtered_videos)}") h_video_ids = [] # 写入对应的redis h_recall_result = {} for video_id in filtered_videos: score = h_recall_df[h_recall_df['videoid'] == video_id]['score'] h_recall_result[int(video_id)] = float(score) h_video_ids.append(int(video_id)) h_recall_key_name = \ f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H}{region}:{data_key}:{rule_key}:" \ f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}" log_.info("打印地域1小时的某个地域{},redis key:{}".format(region, h_recall_key_name)) if len(h_recall_result) > 0: log_.info(f"开始写入头部数据:count = {len(h_recall_result)}, key = {h_recall_key_name}") redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=2 * 24 * 3600) # 限流视频score调整 tmp = update_limit_video_score(initial_videos=h_recall_result, key_name=h_recall_key_name) if tmp: log_.info(f"走了限流逻辑后:count = {len(h_recall_result)}, key = {h_recall_key_name}") else: log_.info("走了限流逻辑,但没更改redis,未生效。") # 清空线上过滤应用列表 # redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER}{region}.{app_type}.{data_key}.{rule_key}") else: log_.info(f"无数据,不写入。") def cal_score_initial(df, param): """ 计算score :param df: 特征数据 :param param: 规则参数 :return: """ # score计算公式: sharerate*backrate*logback*ctr # sharerate = lastonehour_share/(lastonehour_play+1000) # backrate = lastonehour_return/(lastonehour_share+10) # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr # score = sharerate * backrate * LOG(lastonehour_return+1) * K2 df = df.fillna(0) df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000) df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10) df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log) if param.get('view_type', None) == 'video-show': df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000) elif param.get('view_type', None) == 'video-show-region': df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000) else: df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000) df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x) df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return'] df['score1'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2'] click_score_rate = param.get('click_score_rate', None) back_score_rate = param.get('click_score_rate', None) if click_score_rate is not None: df['score'] = (1 - click_score_rate) * df['score1'] + click_score_rate * df['K2'] elif back_score_rate is not None: df['score'] = (1 - back_score_rate) * df['score1'] + back_score_rate * df['back_rate'] else: df['score'] = df['score1'] df = df.sort_values(by=['score'], ascending=False) return df def cal_score(df, param): df = cal_score_initial(df=df, param=param) return df def process_with_region(region, df_merged, data_key, rule_key, rule_param, now_date, now_h): log_.info(f"多协程的region = {region} 开始执行") region_df = df_merged[df_merged['code'] == region] log_.info(f'该区域region = {region}, 下有多少数据量 = {len(region_df)}') score_df = cal_score(df=region_df, param=rule_param) video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=rule_key, param=rule_param, region=region, data_key=data_key) log_.info(f"多协程的region = {region} 完成执行") def process_with_param(param, data_params_item, rule_params_item, region_code_list, feature_df, now_date, now_h): data_key = param.get('data') data_param = data_params_item.get(data_key) rule_key = param.get('rule') rule_param = rule_params_item.get(rule_key) log_.info("数据采用:{},统计采用{}.".format(data_key, rule_key)) log_.info("具体的规则是:{}.".format(rule_param)) df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param] df_merged = reduce(merge_df, df_list) task_list = [ gevent.spawn(process_with_region, region, df_merged, data_key, rule_key, rule_param, now_date, now_h) for region in region_code_list ] gevent.joinall(task_list) log_.info(f"多进程的 param = {param} 完成执行!") def get_feature_data(project, table, time_dt_h): records = get_data_from_odps(date=time_dt_h, project=project, table=table) feature_data = [] for record in records: item = {} for feature_name in features: item[feature_name] = record[feature_name] feature_data.append(item) feature_df = pd.DataFrame(feature_data) return feature_df def rank_by_h(project, table, time_dt_h, time_hour, rule_params, region_code_list): feature_df = get_feature_data(project=project, table=table, time_dt_h=time_dt_h) feature_df['apptype'] = feature_df['apptype'].astype(int) data_params_item = rule_params.get('data_params') rule_params_item = rule_params.get('rule_params') params_list = rule_params.get('params_list') pool = multiprocessing.Pool(processes=len(params_list)) for param in params_list: pool.apply_async( func=process_with_param, args=(param, data_params_item, rule_params_item, region_code_list, feature_df, time_dt_h, time_hour) ) pool.close() pool.join() def h_timer_check(): try: # 1 配置参数读取 rule_params = RULE_PARAMS project = config_.PROJECT_REGION_APP_TYPE table = config_.TABLE_REGION_APP_TYPE region_code_list = [code for region, code in region_code.items()] # 2 开始执行-时间统计 time_now = datetime.datetime.today() time_dt = datetime.datetime.strftime(time_now, '%Y%m%d') time_dt_h = datetime.datetime.strftime(time_now, '%Y%m%d%H') time_hour = datetime.datetime.now().hour time_minute = datetime.datetime.now().minute log_.info(f"开始执行: {time_dt_h}") # 查看当前小时更新的数据是否已准备好 h_data_count = h_data_check(project=project, table=table, now_date=time_now) if h_data_count > 0: log_.info('上游数据表查询数据条数 h_data_count = {}, 开始进行更新。'.format(h_data_count)) # 数据准备好,进行更新 rank_by_h(time_dt_h=time_dt_h, time_hour=time_hour, rule_params=rule_params, project=project, table=table, region_code_list=region_code_list) log_.info("数据1----------正常完成----------") elif time_minute > 40: log_.info('当前分钟超过40,预计执行无法完成,使用 bottom data!') h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list, rule_rank_h_flag=rule_rank_h_flag) log_.info('----------当前分钟超过40,使用bottom的data,完成----------') else: # 数据没准备好,1分钟后重新检查 log_.info("上游数据未就绪,等待...") Timer(60, h_timer_check).start() except Exception as e: log_.error(f"地域分组小时级数据更新失败, exception: {e}, traceback: {traceback.format_exc()}") send_msg_to_feishu( webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'), key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'), msg_text=f"rov-offline{config_.ENV_TEXT} - 地域分组小时级数据更新失败\n" f"exception: {e}\n" f"traceback: {traceback.format_exc()}" ) if __name__ == '__main__': log_.info("文件01_1h_region.py:「1小时地域」 开始执行") h_timer_check()