import pandas as pd
import math
import traceback
from functools import reduce
from odps import ODPS
from threading import Timer
from datetime import datetime, timedelta
from get_data import get_data_from_odps
from db_helper import RedisHelper
from utils import filter_video_status, check_table_partition_exits, filter_video_status_app, send_msg_to_feishu
from config import set_config
from log import Log

config_, _ = set_config()
log_ = Log()


features = [
    'apptype',
    'videoid',
    'lastonehour_preview',  # 过去1小时预曝光人数 - 区分地域
    'lastonehour_view',  # 过去1小时曝光人数 - 区分地域
    'lastonehour_play',  # 过去1小时播放人数 - 区分地域
    'lastonehour_share',  # 过去1小时分享人数 - 区分地域
    'lastonehour_return',  # 过去1小时分享,过去1小时回流人数 - 区分地域
    'lastonehour_preview_total',  # 过去1小时预曝光次数 - 区分地域
    'lastonehour_view_total',  # 过去1小时曝光次数 - 区分地域
    'lastonehour_play_total',  # 过去1小时播放次数 - 区分地域
    'lastonehour_share_total',  # 过去1小时分享次数 - 区分地域
    'platform_return',
    'lastonehour_show',  # 不区分地域
    'lasttwohour_share',  # h-2小时分享人数
    'lasttwohour_return_now',  # h-2分享,过去1小时回流人数
    'lasttwohour_return',  # h-2分享,h-2回流人数
    'lastthreehour_share',  # h-3小时分享人数
    'lastthreehour_return_now',  # h-3分享,过去1小时回流人数
    'lastthreehour_return',  # h-3分享,h-3回流人数

    'lastonehour_return_new',  # 过去1小时分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
    'lasttwohour_return_now_new',  # h-2分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
    'lasttwohour_return_new',  # h-2分享,h-2回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
    'lastthreehour_return_now_new',  # h-3分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
    'lastthreehour_return_new',  # h-3分享,h-3回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
    'platform_return_new',  # 平台分发回流(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
]


def h_data_check(project, table, now_date):
    """检查数据是否准备好"""
    odps = ODPS(
        access_id=config_.ODPS_CONFIG['ACCESSID'],
        secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
        project=project,
        endpoint=config_.ODPS_CONFIG['ENDPOINT'],
        connect_timeout=3000,
        read_timeout=500000,
        pool_maxsize=1000,
        pool_connections=1000
    )

    try:
        dt = datetime.strftime(now_date, '%Y%m%d%H')
        check_res = check_table_partition_exits(date=dt, project=project, table=table)
        if check_res:
            sql = f'select * from {project}.{table} where dt = {dt}'
            with odps.execute_sql(sql=sql).open_reader() as reader:
                data_count = reader.count
        else:
            data_count = 0
    except Exception as e:
        data_count = 0
    return data_count


def h_rank_bottom(now_date, now_h, rule_params):
    """未按时更新数据,用上一小时结果作为当前小时的数据"""
    redis_helper = RedisHelper()
    if now_h == 0:
        redis_dt = datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')
        redis_h = 23
    else:
        redis_dt = datetime.strftime(now_date, '%Y%m%d')
        redis_h = now_h - 1
    key_prefix = config_.RECALL_KEY_NAME_PREFIX_BY_H_H

    for param in rule_params.get('params_list'):
        data_key = param.get('data')
        rule_key = param.get('rule')
        log_.info(f"data_key = {data_key}, rule_key = {rule_key}")
        key_name = f"{key_prefix}{data_key}:{rule_key}:{redis_dt}:{redis_h}"
        initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
        if initial_data is None:
            initial_data = []
        final_data = dict()
        for video_id, score in initial_data:
            final_data[video_id] = score
        # 存入对应的redis
        final_key_name = \
            f"{key_prefix}{data_key}:{rule_key}:{datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
        if len(final_data) > 0:
            redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=2 * 3600)


def get_feature_data(project, table, now_date):
    """获取特征数据"""
    dt = datetime.strftime(now_date, '%Y%m%d%H')
    records = get_data_from_odps(date=dt, project=project, table=table)
    feature_data = []
    for record in records:
        item = {}
        for feature_name in features:
            item[feature_name] = record[feature_name]
        feature_data.append(item)
    feature_df = pd.DataFrame(feature_data)
    return feature_df


def cal_score(df, param):
    # score = sharerate * backrate * LOG(lastonehour_return + 1) * K2
    # sharerate = lastonehour_share / (lastonehour_play + 1000)
    # backrate = lastonehour_return / (lastonehour_share + 10)
    # ctr = lastonehour_play / (lastonehour_show + 1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr

    df = df.fillna(0)
    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
    df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
    if param.get('view_type', None) == 'video-show':
        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
    else:
        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)

    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']

    df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']

    df = df.sort_values(by=['score'], ascending=False)
    return df


def merge_df(df_left, df_right):
    """
    df按照videoid 合并,对应特征求和
    :param df_left:
    :param df_right:
    :return:
    """
    df_merged = pd.merge(df_left, df_right, on=['videoid'], how='outer', suffixes=['_x', '_y'])
    df_merged.fillna(0, inplace=True)
    feature_list = ['videoid']
    for feature in features:
        if feature in ['apptype', 'videoid']:
            continue
        df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
        feature_list.append(feature)
    return df_merged[feature_list]


def merge_df_with_score(df_left, df_right):
    """
    df 按照videoid合并,平台回流人数、回流人数、分数 分别求和
    :param df_left:
    :param df_right:
    :return:
    """
    df_merged = pd.merge(df_left, df_right, on=['videoid'], how='outer', suffixes=['_x', '_y'])
    df_merged.fillna(0, inplace=True)
    feature_list = ['videoid', 'lastonehour_return', 'platform_return', 'score']
    for feature in feature_list[1:]:
        df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
    return df_merged[feature_list]


def video_rank_h(df, now_date, now_h, rule_key, param, data_key):
    """
    获取符合进入召回源条件的视频
    """
    redis_helper = RedisHelper()
    log_.info(f"videos_count = {len(df)}")

    # videoid重复时,保留分值高
    df = df.sort_values(by=['score'], ascending=False)
    df = df.drop_duplicates(subset=['videoid'], keep='first')
    df['videoid'] = df['videoid'].astype(int)

    # 获取符合进入召回源条件的视频
    platform_return_rate = param.get('platform_return_rate', 0)
    h_recall_df = df[df['platform_return_rate'] > platform_return_rate]
    h_recall_videos = h_recall_df['videoid'].to_list()
    log_.info(f'h_recall videos count = {len(h_recall_videos)}')

    # 视频状态过滤
    if data_key in ['data7', ]:
        filtered_videos = filter_video_status_app(h_recall_videos)
    else:
        filtered_videos = filter_video_status(h_recall_videos)
    log_.info('filtered_videos count = {}'.format(len(filtered_videos)))

    # 写入对应的redis
    now_dt = datetime.strftime(now_date, '%Y%m%d')
    h_video_ids = []
    h_recall_result = {}
    for video_id in filtered_videos:
        score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
        h_recall_result[int(video_id)] = float(score)
        h_video_ids.append(int(video_id))

    h_recall_key_name = \
        f"{config_.RECALL_KEY_NAME_PREFIX_BY_H_H}{data_key}:{rule_key}:{now_dt}:{now_h}"

    if len(h_recall_result) > 0:
        log_.info(f"count = {len(h_recall_result)}, key = {h_recall_key_name}")
        redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=2 * 3600)


def rank_by_h(now_date, now_h, rule_params, project, table):
    # 获取特征数据
    feature_df = get_feature_data(now_date=now_date, project=project, table=table)
    feature_df['apptype'] = feature_df['apptype'].astype(int)
    # rank
    data_params_item = rule_params.get('data_params')
    rule_params_item = rule_params.get('rule_params')

    for param in rule_params.get('params_list'):
        score_df_list = []
        data_key = param.get('data')
        data_param = data_params_item.get(data_key)
        log_.info(f"data_key = {data_key}, data_param = {data_param}")
        rule_key = param.get('rule')
        rule_param = rule_params_item.get(rule_key)
        log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
        merge_func = rule_param.get('merge_func', 1)

        if merge_func == 2:
            for apptype, weight in data_param.items():
                df = feature_df[feature_df['apptype'] == apptype]
                # 计算score
                score_df = cal_score(df=df, param=rule_param)
                score_df['score'] = score_df['score'] * weight
                score_df_list.append(score_df)
            # 分数合并
            df_merged = reduce(merge_df_with_score, score_df_list)
            # 更新平台回流比
            df_merged['platform_return_rate'] = df_merged['platform_return'] / df_merged['lastonehour_return']
            video_rank_h(df=df_merged, now_date=now_date, now_h=now_h,
                         rule_key=rule_key, param=rule_param, data_key=data_key)

        else:
            df_list = [feature_df[feature_df['apptype'] == apptype] for apptype, _ in data_param.items()]
            df_merged = reduce(merge_df, df_list)
            score_df = cal_score(df=df_merged, param=rule_param)
            video_rank_h(df=score_df, now_date=now_date, now_h=now_h,
                         rule_key=rule_key, param=rule_param, data_key=data_key)


def h_timer_check():
    try:
        project = config_.PROJECT_H_APP_TYPE
        table = config_.TABLE_H_APP_TYPE
        rule_params = config_.RULE_PARAMS_H_APP_TYPE
        now_date = datetime.today()
        log_.info(f"now_date: {datetime.strftime(now_date, '%Y%m%d%H')}")
        now_min = datetime.now().minute
        now_h = datetime.now().hour

        if now_h == 0:
            log_.info(f'now_h = {now_h} use bottom data!')
            h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params)
            log_.info(f"h_data end!")
            return
        # 查看当前小时级更新的数据是否已准备好
        h_data_count = h_data_check(project=project, table=table, now_date=now_date)
        if h_data_count > 0:
            log_.info(f'h_data_count = {h_data_count}')
            # 数据准备好,进行更新
            rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params, project=project, table=table)
            log_.info(f"h_data end!")
        elif now_min > 40:
            log_.info('h_recall data is None, use bottom data!')
            h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params)
            log_.info(f"h_data end!")
        else:
            # 数据没准备好,1分钟后重新检查
            Timer(60, h_timer_check).start()

    except Exception as e:
        log_.error(f"不区分地域小时级数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
        send_msg_to_feishu(
            webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
            key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
            msg_text=f"rov-offline{config_.ENV_TEXT} - 不区分地域小时级数据更新失败\n"
                     f"exception: {e}\n"
                     f"traceback: {traceback.format_exc()}"
        )


if __name__ == '__main__':
    log_.info(f"h_data start...")
    h_timer_check()