# -*- coding: utf-8 -*- import pandas as pd import traceback import odps from odps import ODPS import json from threading import Timer from datetime import datetime, timedelta from db_helper import MysqlHelper from my_utils import check_table_partition_exits_v2, get_dataframe_from_odps, \ get_odps_df_of_max_partition, get_odps_instance, get_odps_df_of_recent_partitions from my_utils import request_post, send_msg_to_feishu from my_config import set_config import numpy as np from log import Log import os from argparse import ArgumentParser from constants import AutoReplyAccountType CONFIG, _ = set_config() LOGGER = Log() BASE_GROUP_NAME = '3rd-party-base' EXPLORE1_GROUP_NAME = '3rd-party-explore1' EXPLORE2_GROUP_NAME = '3rd-party-explore2' # GH_IDS will be updated by get_and_update_gh_ids GH_IDS = ('default',) TARGET_GH_IDS = ( 'gh_250c51d5ce69', 'gh_8a29eebc2012', 'gh_ff16c412ab97', 'gh_1014734791e0', 'gh_570967881eae', 'gh_a7c21403c493', 'gh_7f062810b4e7', 'gh_c8060587e6d1', 'gh_1da8f62f4a0d', 'gh_56b65b7d4520', 'gh_eeec7c2e28a5', 'gh_7c89d5a3e745', 'gh_ee5b4b07ed8b', 'gh_0d3c97cc30cc', 'gh_c783350a9660', ) CDN_IMG_OPERATOR = "?x-oss-process=image/resize,m_fill,w_600,h_480,limit_0/format,jpg/watermark,image_eXNoL3BpYy93YXRlcm1hcmtlci9pY29uX3BsYXlfd2hpdGUucG5nP3gtb3NzLXByb2Nlc3M9aW1hZ2UvcmVzaXplLHdfMTQ0,g_center" ODS_PROJECT = "loghubods" EXPLORE_POOL_TABLE = 'alg_growth_video_return_stats_history' GH_REPLY_STATS_TABLE = 'alg_growth_3rd_gh_reply_video_stats' ODPS_RANK_RESULT_TABLE = 'alg_3rd_gh_autoreply_video_rank_data' GH_DETAIL = 'gh_detail' RDS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data' STATS_PERIOD_DAYS = 5 SEND_N = 1 def get_and_update_gh_ids(run_dt): gh = get_odps_df_of_max_partition(ODS_PROJECT, GH_DETAIL, {'dt': run_dt}) gh = gh.to_pandas() gh = gh[gh['type'] == AutoReplyAccountType.EXTERNAL_GZH.value] # default单独处理 if 'default' not in gh['gh_id'].values: new_row = pd.DataFrame({'gh_id': ['default'], 'gh_name': ['默认'], 'type': [2], 'category1': ['泛生活']}, index=[0]) gh = pd.concat([gh, new_row], ignore_index=True) gh = gh.drop_duplicates(subset=['gh_id']) global GH_IDS GH_IDS = tuple(gh['gh_id']) return gh def check_data_partition(project, table, data_dt, data_hr=None): """检查数据是否准备好""" try: partition_spec = {'dt': data_dt} if data_hr: partition_spec['hour'] = data_hr part_exist, data_count = check_table_partition_exits_v2( project, table, partition_spec) except Exception as e: data_count = 0 return data_count def get_last_strategy_result(project, rank_table, dt_version, key): strategy_df = get_odps_df_of_max_partition( project, rank_table, {'ctime': dt_version} ).to_pandas() sub_df = strategy_df.query(f'strategy_key == "{key}"') sub_df = sub_df[['gh_id', 'video_id', 'strategy_key', 'sort']].drop_duplicates() return sub_df def process_reply_stats(project, table, period, run_dt): # 获取多天即转统计数据用于聚合 df = get_odps_df_of_recent_partitions(project, table, period, {'dt': run_dt}) df = df.to_pandas() df['video_id'] = df['video_id'].astype('int64') df = df[['gh_id', 'video_id', 'send_count', 'first_visit_uv', 'day0_return']] # 账号内聚合 df = df.groupby(['video_id', 'gh_id']).agg({ 'send_count': 'sum', 'first_visit_uv': 'sum', 'day0_return': 'sum' }).reset_index() # 聚合所有数据作为default default_stats_df = df.groupby('video_id').agg({ 'send_count': 'sum', 'first_visit_uv': 'sum', 'day0_return': 'sum' }).reset_index() default_stats_df['gh_id'] = 'default' merged_df = pd.concat([df, default_stats_df]).reset_index(drop=True) merged_df['score'] = merged_df['day0_return'] / (merged_df['send_count'] + 500) return merged_df def rank_for_layer1(run_dt, run_hour, project, table, gh): # TODO: 加审核&退场 df = get_odps_df_of_max_partition(project, table, {'dt': run_dt}) df = df.to_pandas() # 确保重跑时可获得一致结果 dt_version = f'{run_dt}{run_hour}' np.random.seed(int(dt_version) + 1) # TODO: 修改权重计算策略 df['score'] = df['ros'] # 按照 category1 分类后进行加权随机抽样 sampled_df = df.groupby('category1').apply( lambda x: x.sample(n=SEND_N, weights=x['score'], replace=False)).reset_index(drop=True) sampled_df['sort'] = sampled_df.groupby('category1')['score'].rank(method='first', ascending=False).astype(int) # 按得分排序 sampled_df = sampled_df.sort_values(by=['category1', 'score'], ascending=[True, False]).reset_index(drop=True) sampled_df['strategy_key'] = EXPLORE1_GROUP_NAME sampled_df['dt_version'] = dt_version extend_df = sampled_df.merge(gh, on='category1') result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']] return result_df def rank_for_layer2(run_dt, run_hour, project, stats_table, rank_table): stats_df = process_reply_stats(project, stats_table, STATS_PERIOD_DAYS, run_dt) # 确保重跑时可获得一致结果 dt_version = f'{run_dt}{run_hour}' np.random.seed(int(dt_version) + 1) # TODO: 计算账号间相关性 ## 账号两两组合,取有RoVn数值视频的交集,单个账号内的RoVn(平滑后)组成向量 ## 求向量相关系数或cosine相似度 ## 单个视频的RoVn加权求和 # 当前实现基础版本:只在账号内求二级探索排序分 sampled_dfs = [] # 处理default逻辑(default-explore2) default_stats_df = stats_df.query('gh_id == "default"') sampled_df = default_stats_df.sample(n=SEND_N, weights=default_stats_df['score']) sampled_df['sort'] = range(1, len(sampled_df) + 1) sampled_dfs.append(sampled_df) # 基础过滤for账号 df = stats_df.query('day0_return > 100') # fallback to base if necessary base_strategy_df = get_last_strategy_result( project, rank_table, dt_version, BASE_GROUP_NAME) for gh_id in GH_IDS: if gh_id == 'default': continue sub_df = df.query(f'gh_id == "{gh_id}"') if len(sub_df) < SEND_N: LOGGER.warning( "gh_id[{}] rows[{}] not enough for layer2, fallback to base" .format(gh_id, len(sub_df))) sub_df = base_strategy_df.query(f'gh_id == "{gh_id}"') sub_df['score'] = sub_df['sort'] sampled_df = sub_df.sample(n=SEND_N, weights=sub_df['score']) sampled_df['sort'] = range(1, len(sampled_df) + 1) sampled_dfs.append(sampled_df) extend_df = pd.concat(sampled_dfs) extend_df['strategy_key'] = EXPLORE2_GROUP_NAME extend_df['dt_version'] = dt_version result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']] return result_df def rank_for_base(run_dt, run_hour, project, stats_table, rank_table, stg_key): stats_df = process_reply_stats(project, stats_table, STATS_PERIOD_DAYS, run_dt) # TODO: support to set base manually dt_version = f'{run_dt}{run_hour}' # 获取当前base信息, 策略表dt_version(ctime partition)采用当前时间 base_strategy_df = get_last_strategy_result( project, rank_table, dt_version, stg_key) default_stats_df = stats_df.query('gh_id == "default"') # 在账号内排序,决定该账号(包括default)的base利用内容 # 排序过程中,确保当前base策略参与排序,因此先关联再过滤 gh_ids_str = ','.join(f'"{x}"' for x in GH_IDS) stats_df = stats_df.query(f'gh_id in ({gh_ids_str})') stats_with_strategy_df = stats_df \ .merge( base_strategy_df, on=['gh_id', 'video_id'], how='left') \ .query('strategy_key.notna() or score > 0.1') # 合并default和分账号数据 grouped_stats_df = pd.concat([default_stats_df, stats_with_strategy_df]).reset_index() def set_top_n(group, n=2): group_sorted = group.sort_values(by='score', ascending=False) top_n = group_sorted.head(n) top_n['sort'] = range(1, len(top_n) + 1) return top_n ranked_df = grouped_stats_df.groupby('gh_id').apply(set_top_n, SEND_N) ranked_df = ranked_df.reset_index(drop=True) ranked_df['strategy_key'] = stg_key ranked_df['dt_version'] = dt_version ranked_df = ranked_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']] return ranked_df def check_result_data(df): for gh_id in GH_IDS: for key in (EXPLORE1_GROUP_NAME, EXPLORE2_GROUP_NAME, BASE_GROUP_NAME): sub_df = df.query(f'gh_id == "{gh_id}" and strategy_key == "{key}"') n_records = len(sub_df) if n_records != SEND_N: raise Exception(f"Unexpected record count: {gh_id},{key},{n_records}") def postprocess_override_by_config(df, dt_version): config = json.load(open("configs/3rd_gh_reply_video.json")) override_data = { 'strategy_key': [], 'gh_id': [], 'sort': [], 'video_id': [] } for gh_id in config: gh_config = config[gh_id] for key in gh_config: for video_config in gh_config[key]: # remove current position = video_config['position'] video_id = video_config['video_id'] df = df.drop(df.query(f'gh_id == "{gh_id}" and strategy_key == "{key}" and sort == {position}').index) override_data['strategy_key'].append(key) override_data['gh_id'].append(gh_id) override_data['sort'].append(position) override_data['video_id'].append(video_id) n_records = len(override_data['strategy_key']) override_data['dt_version'] = [dt_version] * n_records override_data['score'] = [0.0] * n_records df_to_append = pd.DataFrame(override_data) df = pd.concat([df, df_to_append], ignore_index=True) return df def rank_for_base_designate(run_dt, run_hour, stg_key): dt_version = f'{run_dt}{run_hour}' ranked_df = pd.DataFrame() # 初始化一个空的 DataFrame for gh_id in GH_IDS: if gh_id in TARGET_GH_IDS: temp_df = pd.DataFrame({ 'strategy_key': [stg_key], 'dt_version': [dt_version], 'gh_id': [gh_id], 'sort': [1], 'video_id': [13586800], 'score': [0.5] }) else: temp_df = pd.DataFrame({ 'strategy_key': [stg_key], 'dt_version': [dt_version], 'gh_id': [gh_id], 'sort': [1], 'video_id': [20463342], 'score': [0.5] }) ranked_df = pd.concat([ranked_df, temp_df], ignore_index=True) return ranked_df def build_and_transfer_data(run_dt, run_hour, project, **kwargs): dt_version = f'{run_dt}{run_hour}' dry_run = kwargs.get('dry_run', False) gh_df = get_and_update_gh_ids(run_dt) layer1_rank = rank_for_layer1(run_dt, run_hour, ODS_PROJECT, EXPLORE_POOL_TABLE, gh_df) # layer2_rank = rank_for_layer2(run_dt, run_hour, ODS_PROJECT, GH_REPLY_STATS_TABLE, ODPS_RANK_RESULT_TABLE) # base_rank = rank_for_base(run_dt, run_hour, ODS_PROJECT, GH_REPLY_STATS_TABLE, ODPS_RANK_RESULT_TABLE,BASE_GROUP_NAME) layer2_rank = rank_for_base_designate(run_dt, run_hour, EXPLORE2_GROUP_NAME) base_rank = rank_for_base_designate(run_dt, run_hour, BASE_GROUP_NAME) final_rank_df = pd.concat([layer1_rank, layer2_rank, base_rank]).reset_index(drop=True) final_rank_df = postprocess_override_by_config(final_rank_df, dt_version) check_result_data(final_rank_df) odps_instance = get_odps_instance(project) odps_ranked_df = odps.DataFrame(final_rank_df) video_df = get_dataframe_from_odps('videoods', 'wx_video') video_df['cover_url'] = video_df['cover_img_path'] + CDN_IMG_OPERATOR video_df = video_df['id', 'title', 'cover_url'] final_df = odps_ranked_df.join(video_df, on=('video_id', 'id')) final_df = final_df.to_pandas() final_df = final_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'title', 'cover_url', 'score']] # reverse sending order final_df['sort'] = SEND_N + 1 - final_df['sort'] if dry_run: print(final_df[['strategy_key', 'gh_id', 'sort', 'video_id', 'score', 'title']]) return # save to ODPS t = odps_instance.get_table(ODPS_RANK_RESULT_TABLE) part_spec_dict = {'dt': run_dt, 'hour': run_hour, 'ctime': dt_version} part_spec = ','.join(['{}={}'.format(k, part_spec_dict[k]) for k in part_spec_dict.keys()]) with t.open_writer(partition=part_spec, create_partition=True, overwrite=True) as writer: writer.write(list(final_df.itertuples(index=False))) # sync to MySQL data_to_insert = [tuple(row) for row in final_df.itertuples(index=False)] data_columns = list(final_df.columns) mysql = MysqlHelper(CONFIG.MYSQL_CRAWLER_INFO) mysql.batch_insert(RDS_RANK_RESULT_TABLE, data_to_insert, data_columns) def main_loop(): argparser = ArgumentParser() argparser.add_argument('-n', '--dry-run', action='store_true') argparser.add_argument('--run-at',help='assume to run at date and hour, yyyyMMddHH') args = argparser.parse_args() run_date = datetime.today() if args.run_at: run_date = datetime.strptime(args.run_at, "%Y%m%d%H") LOGGER.info(f"Assume to run at {run_date.strftime('%Y-%m-%d %H:00')}") try: now_date = datetime.today() LOGGER.info(f"开始执行: {datetime.strftime(now_date, '%Y-%m-%d %H:%M')}") last_date = run_date - timedelta(1) last_dt = last_date.strftime("%Y%m%d") # 查看当前天级更新的数据是否已准备好 # 当前上游统计表为天级更新,但字段设计为兼容小时级 h_data_count = check_data_partition(ODS_PROJECT, GH_REPLY_STATS_TABLE, last_dt, '00') if h_data_count > 0: LOGGER.info('上游数据表查询数据条数={},开始计算'.format(h_data_count)) run_dt = run_date.strftime("%Y%m%d") run_hour = run_date.strftime("%H") LOGGER.info(f'run_dt: {run_dt}, run_hour: {run_hour}') build_and_transfer_data(run_dt, run_hour, ODS_PROJECT, dry_run=args.dry_run) LOGGER.info('数据更新完成') else: LOGGER.info("上游数据未就绪,等待60s") Timer(60, main_loop).start() return except Exception as e: LOGGER.error(f"数据更新失败, exception: {e}, traceback: {traceback.format_exc()}") if CONFIG.ENV_TEXT == '开发环境': return send_msg_to_feishu( webhook=CONFIG.FEISHU_ROBOT['server_robot'].get('webhook'), key_word=CONFIG.FEISHU_ROBOT['server_robot'].get('key_word'), msg_text=f"rov-offline{CONFIG.ENV_TEXT} - 数据更新失败\n" f"exception: {e}\n" f"traceback: {traceback.format_exc()}" ) if __name__ == '__main__': LOGGER.info("%s 开始执行" % os.path.basename(__file__)) LOGGER.info(f"environment: {CONFIG.ENV_TEXT}") main_loop()