import time import datetime import pandas as pd import math import random from odps import ODPS from threading import Timer from get_data import get_data_from_odps from db_helper import RedisHelper, MysqlHelper from config import set_config from log import Log from utils import filter_video_status_with_applet_rec config_, env = set_config() log_ = Log() features = [ '视频id', '抓取时间', '进入黑名单时间', '站外播放量' ] def h_data_check(project, table, now_date): """检查数据是否准备好""" odps = ODPS( access_id=config_.ODPS_CONFIG['ACCESSID'], secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'], project=project, endpoint=config_.ODPS_CONFIG['ENDPOINT'], connect_timeout=3000, read_timeout=500000, pool_maxsize=1000, pool_connections=1000 ) try: dt = datetime.datetime.strftime(now_date, '%Y%m%d') sql = f'select * from {project}.{table} where dt = {dt}' with odps.execute_sql(sql=sql).open_reader() as reader: data_count = reader.count except Exception as e: data_count = 0 return data_count def get_feature_data(now_date, project, table): """获取特征数据""" dt = datetime.datetime.strftime(now_date, '%Y%m%d') # dt = '2022041310' records = get_data_from_odps(date=dt, project=project, table=table) feature_data = [] for record in records: item = {} for feature_name in features: item[feature_name] = record[feature_name] feature_data.append(item) feature_df = pd.DataFrame(feature_data) return feature_df def video_rank(app_type, df, now_date): """ 对视频进行排序 :param app_type: :param df: :param now_date: :return: """ df = df.fillna(0) # 视频状态过滤 log_.info(f'initial_df count = {len(df)}') video_ids = [int(video_id) for video_id in df['videoid']] df['videoid'] = df['videoid'].astype(int) df = df.drop_duplicates(['videoid'], keep=False) log_.info(f'df length = {len(df)}') # 获取待推荐 filtered_result_6 = filter_video_status_with_applet_rec(video_ids=video_ids, applet_rec_status=-6) filtered_df_6 = df[df['videoid'].isin(filtered_result_6)] filtered_df_6 = filtered_df_6.sort_values(by=['站外播放量'], ascending=False) log_.info(f'filtered_df_6 count = {len(filtered_df_6)}') # 获取普通推荐 filtered_result_1 = filter_video_status_with_applet_rec(video_ids=video_ids, applet_rec_status=1) filtered_df_1 = df[df['videoid'].isin(filtered_result_1)] filtered_df_1 = filtered_df_1.sort_values(by=['站外播放量'], ascending=False) log_.info(f'filtered_df_1 count = {len(filtered_df_1)}') # 排序合并,给定分数 merge_df = filtered_df_1.append(filtered_df_6) merge_df = merge_df.drop_duplicates(['videoid'], keep=False) merge_videos = merge_df['videoid'].to_list() final_result = {} step = round(100 / len(merge_videos), 3) for i, video_id in enumerate(merge_videos): score = 100 - i * step final_result[int(video_id)] = score # 写入对应的redis # key_name = \ # f"{}{app_type}.{datetime.datetime.strftime(now_date, '%Y%m%d')}" # if len(final_result) > 0: # redis_helper = RedisHelper() # redis_helper.add_data_with_zset(key_name=key_name, data=final_result, expire_time=23 * 3600) def rank_by_h(app_type, now_date, now_h, return_count_list, project, table): # 获取特征数据 feature_df = get_feature_data(now_date=now_date, project=project, table=table) # rank for cnt in return_count_list: log_.info(f"return_count = {cnt}") video_rank(app_type=app_type, df=feature_df, now_date=now_date) # to-csv # score_filename = f"score_{app_type}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv" # score_df.to_csv(f'./data/{score_filename}')