import os import pandas as pd import xgboost as xgb from xgboost.sklearn import XGBClassifier # 1. 模型加载 model = XGBClassifier() booster = xgb.Booster() booster.load_model('./data/ad_xgb.model') model._Booster = booster # 2. 预测:ad_status = 0, 不出广告 df_0 = pd.read_csv('./data/predict_data/predict_data_0.csv') columns_0 = df_0.columns.values.tolist() columns_0.remove('videoid') y_pred_proba_0 = model.predict_proba(df_0[columns_0[2:]]) df_0['y_0'] = [x[1] for x in y_pred_proba_0] pre_df_0 = df_0[['apptype', 'mid', 'videoid', 'y_0']].copy() # 3. 预测:ad_status = 1, 不出广告 df_1 = pd.read_csv('./data/predict_data/predict_data_1.csv') columns_1 = df_1.columns.values.tolist() columns_1.remove('videoid') y_pred_proba_1 = model.predict_proba(df_1[columns_1[2:]]) df_1['y_1'] = [x[1] for x in y_pred_proba_1] pre_df_1 = df_1[['apptype', 'mid', 'videoid', 'y_1']].copy() # 4. merge 结果 res_df = pd.merge(pre_df_0, pre_df_1, how='left', on=['apptype', 'mid', 'videoid']) res_df['res_predict'] = res_df['y_0'] - res_df['y_1'] print(res_df.head()) # 5. to redis