import datetime import numpy as np import pandas as pd from odps import ODPS from utils import data_check, get_feature_data, send_msg_to_feishu, RedisHelper from config import set_config from log import Log config_, _ = set_config() log_ = Log() redis_helper = RedisHelper() def predict_user_group_share_rate(dt, app_type): """预估用户组对应的有广告时分享率""" # 获取用户组特征 project = config_.ad_model_data['users_share_rate'].get('project') table = config_.ad_model_data['users_share_rate'].get('table') features = [ 'apptype', 'group', 'sharerate_all', 'sharerate_ad' ] user_group_df = get_feature_data(project=project, table=table, features=features, dt=dt) user_group_df['apptype'] = user_group_df['apptype'].astype(int) user_group_df = user_group_df[user_group_df['apptype'] == app_type] user_group_df['sharerate_all'] = user_group_df['sharerate_all'].astype(float) user_group_df['sharerate_ad'] = user_group_df['sharerate_ad'].astype(float) # 获取有广告时所有用户组近30天的分享率 ad_all_group_share_rate = user_group_df[user_group_df['group'] == 'allmids']['sharerate_ad'].values[0] user_group_df = user_group_df[user_group_df['group'] != 'allmids'] # 计算用户组有广告时分享率 user_group_df['group_ad_share_rate'] = \ user_group_df['sharerate_ad'] * float(ad_all_group_share_rate) / user_group_df['sharerate_all'] return user_group_df def predict_video_share_rate(dt, app_type): """预估视频有广告时分享率""" # 获取视频特征 project = config_.ad_model_data['videos_share_rate'].get('project') table = config_.ad_model_data['videos_share_rate'].get('table') features = [ 'apptype', 'videoid', 'sharerate_all', 'sharerate_ad' ] video_df = get_feature_data(project=project, table=table, features=features, dt=dt) video_df['apptype'] = video_df['apptype'].astype(int) video_df = video_df[video_df['apptype'] == app_type] video_df['sharerate_all'] = video_df['sharerate_all'].astype(float) video_df['sharerate_ad'] = video_df['sharerate_ad'].astype(float) # 获取有广告时所有视频近30天的分享率 ad_all_videos_share_rate = video_df[video_df['videoid'] == 'allvideos']['sharerate_ad'].values[0] video_df = video_df[video_df['videoid'] != 'allvideos'] # 计算视频有广告时分享率 video_df['video_ad_share_rate'] = \ video_df['sharerate_ad'] * float(ad_all_videos_share_rate) / video_df['sharerate_all'] return video_df def predict_ad_group_video(): now_date = datetime.datetime.today() dt = datetime.datetime.strftime(now_date, '%Y%m%d') log_.info(f"dt = {dt}") # 获取用户组预测值 group_key_name = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{dt}" group_data = redis_helper.get_all_data_from_zset(key_name=group_key_name, with_scores=True) if group_data is None: log_.info(f"group data is None!") group_df = pd.DataFrame(data=group_data, columns=['group', 'group_ad_share_rate']) group_df = group_df[group_df['group'] != 'mean_group'] log_.info(f"group_df count = {len(group_df)}") # 获取视频预测值 video_key_name = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{dt}" video_data = redis_helper.get_all_data_from_zset(key_name=video_key_name, with_scores=True) if video_data is None: log_.info(f"video data is None!") video_df = pd.DataFrame(data=video_data, columns=['videoid', 'video_ad_share_rate']) video_df = video_df[video_df['videoid'] != -1] log_.info(f"video_df count = {len(video_df)}") predict_df = video_df threshold_data = {} all_group_data = [] for index, item in group_df.iterrows(): predict_df[item['group']] = predict_df['video_ad_share_rate'] * item['group_ad_share_rate'] # 获取分组对应的均值作为阈值 threshold_data[item['group']] = predict_df[item['group']].mean() all_group_data.extend(predict_df[item['group']].tolist()) threshold_data['mean_group'] = np.mean(all_group_data) log_.info(f"threshold_data = {threshold_data}") # 将阈值写入redis for key, val in threshold_data.items(): key_name = f"{config_.KEY_NAME_PREFIX_AD_THRESHOLD}{key}" redis_helper.set_data_to_redis(key_name=key_name, value=val, expire_time=2 * 24 * 3600) predict_df.to_csv('./data/ad_user_video_predict.csv') return predict_df if __name__ == '__main__': predict_df = predict_ad_group_video()