Browse Source

Update alg_growth_gh_reply_video_v1: reduce duplicates

StrayWarrior 7 months ago
parent
commit
fac65cbd63
1 changed files with 36 additions and 40 deletions
  1. 36 40
      alg_growth_gh_reply_video_v1.py

+ 36 - 40
alg_growth_gh_reply_video_v1.py

@@ -44,6 +44,36 @@ def check_data_partition(project, table, data_dt, data_hr=None):
         data_count = 0
     return data_count
 
+
+def process_reply_stats(project, table, period, run_dt):
+    # 获取多天即转统计数据用于聚合
+    df = get_odps_df_of_recent_partitions(project, table, period, {'dt': run_dt})
+    df = df.to_pandas()
+
+    df['video_id'] = df['video_id'].astype('int64')
+    df = df[['gh_id', 'video_id', 'send_count', 'first_visit_uv', 'day0_return']]
+
+    # 账号内聚合
+    df = df.groupby(['video_id', 'gh_id']).agg({
+        'send_count': 'sum',
+        'first_visit_uv': 'sum',
+        'day0_return': 'sum'
+    }).reset_index()
+
+    # 聚合所有数据作为default
+    default_stats_df = df.groupby('video_id').agg({
+        'send_count': 'sum',
+        'first_visit_uv': 'sum',
+        'day0_return': 'sum'
+    }).reset_index()
+    default_stats_df['gh_id'] = 'default'
+
+    merged_df = pd.concat([df, default_stats_df]).reset_index(drop=True)
+
+    merged_df['score'] = merged_df['day0_return'] / (merged_df['first_visit_uv'] + 1000)
+    return merged_df
+
+
 def rank_for_layer1(run_dt, run_hour, project, table):
     # TODO: 加审核&退场
     df = get_odps_df_of_max_partition(project, table, {'dt': run_dt})
@@ -69,15 +99,7 @@ def rank_for_layer1(run_dt, run_hour, project, table):
     return result_df
 
 def rank_for_layer2(run_dt, run_hour, project, table):
-    df = get_odps_df_of_recent_partitions(project, table, STATS_PERIOD_DAYS, {'dt': run_dt})
-    df = df.to_pandas()
-    df['video_id'] = df['video_id'].astype('int64')
-    df = df[['gh_id', 'video_id', 'send_count', 'first_visit_uv', 'day0_return']]
-    df = df.groupby(['video_id', 'gh_id']).agg({
-        'send_count': 'sum',
-        'first_visit_uv': 'sum',
-        'day0_return': 'sum'
-    }).reset_index()
+    stats_df = process_reply_stats(project, table, STATS_PERIOD_DAYS, run_dt)
 
     # 确保重跑时可获得一致结果
     dt_version = f'{run_dt}{run_hour}'
@@ -90,23 +112,15 @@ def rank_for_layer2(run_dt, run_hour, project, table):
 
     sampled_dfs = []
     # 处理default逻辑(default-explore2)
-    default_stats_df = df \
-        .groupby('video_id') \
-        .agg({'send_count': 'sum',
-              'first_visit_uv': 'sum',
-              'day0_return': 'sum'}) \
-        .reset_index()
-    default_stats_df['gh_id'] = 'default'
-    default_stats_df['score'] = default_stats_df['day0_return'] / (default_stats_df['first_visit_uv'] + 1000)
+    default_stats_df = stats_df.query('gh_id == "default"')
     sampled_df = default_stats_df.sample(n=2, weights=default_stats_df['score'])
     sampled_df['sort'] = range(1, len(sampled_df) + 1)
     sampled_dfs.append(sampled_df)
 
     # 基础过滤for账号
-    df = df.query('day0_return > 100')
+    df = stats_df.query('day0_return > 100')
     # TODO: fetch send_count
     # TODO: 个数不足时的兜底逻辑
-    df['score'] = df['day0_return'] / (df['first_visit_uv'] + 1000)
     for gh_id in GH_IDS:
         sub_df = df.query(f'gh_id == "{gh_id}"')
         sampled_df = sub_df.sample(n=2, weights=sub_df['score'])
@@ -122,6 +136,8 @@ def rank_for_layer2(run_dt, run_hour, project, table):
     return result_df
 
 def rank_for_base(run_dt, run_hour, project, stats_table, rank_table):
+    stats_df = process_reply_stats(project, stats_table, STATS_PERIOD_DAYS, run_dt)
+
     #TODO: support to set base manually
     dt_version = f'{run_dt}{run_hour}'
 
@@ -132,26 +148,7 @@ def rank_for_base(run_dt, run_hour, project, stats_table, rank_table):
     base_strategy_df = strategy_df.query('strategy_key.str.contains("base")')
     base_strategy_df = base_strategy_df[['gh_id', 'video_id', 'strategy_key']].drop_duplicates()
 
-    # 获取多天即转统计数据,聚合
-    stats_df = get_odps_df_of_recent_partitions(
-        project, stats_table, STATS_PERIOD_DAYS, {'dt': run_dt}
-    ).to_pandas()
-    stats_df['video_id'] = stats_df['video_id'].astype('int64')
-    stats_df = stats_df[['gh_id', 'video_id', 'send_count', 'first_visit_uv', 'day0_return']]
-    stats_df = stats_df.groupby(['video_id', 'gh_id']).agg({
-        'send_count': 'sum',
-        'first_visit_uv': 'sum',
-        'day0_return': 'sum'
-    }).reset_index()
-
-    # 聚合所有数据作为新号base利用数据(default-base)
-    default_stats_df = stats_df \
-        .groupby('video_id') \
-        .agg({'send_count': 'sum',
-              'first_visit_uv': 'sum',
-              'day0_return': 'sum'}) \
-        .reset_index()
-    default_stats_df['gh_id'] = 'default'
+    default_stats_df = stats_df.query('gh_id == "default"')
 
     # 在账号内排序,决定该账号(包括default)的base利用内容
     # 排序过程中,确保当前base策略参与排序,因此先关联再过滤
@@ -168,7 +165,6 @@ def rank_for_base(run_dt, run_hour, project, stats_table, rank_table):
     # 合并default和分账号数据
     grouped_stats_df = pd.concat([default_stats_df, stats_with_strategy_df]).reset_index()
 
-    grouped_stats_df['score'] = grouped_stats_df['day0_return'] / (grouped_stats_df['first_visit_uv'] + 1000)
     def set_top_n(group, n=2):
         group_sorted = group.sort_values(by='score', ascending=False)
         top_n = group_sorted.head(n)