|
@@ -90,18 +90,20 @@ def threshold_update(project, table, dt, app_type):
|
|
|
print(f"feature_initial_df shape: {feature_initial_df.shape}")
|
|
|
# 获取所需的字段
|
|
|
predict_df = feature_initial_df[features[4:]]
|
|
|
+ print(f"predict_df shape: {predict_df.shape}")
|
|
|
|
|
|
# 2. 不出广告情况下的预测
|
|
|
predict_df_0 = predict_df.copy()
|
|
|
predict_df_0['ad_status'] = 0
|
|
|
y_pred_proba_0 = model.predict_proba(predict_df_0)
|
|
|
- predict_df['y_0'] = [x[1] for x in y_pred_proba_0]
|
|
|
- print(f"predict_df shape: {predict_df.shape}")
|
|
|
|
|
|
# 3. 出广告情况下的预测
|
|
|
predict_df_1 = predict_df.copy()
|
|
|
predict_df_1['ad_status'] = 1
|
|
|
y_pred_proba_1 = model.predict_proba(predict_df_1)
|
|
|
+
|
|
|
+ predict_df['y_0'] = [x[1] for x in y_pred_proba_0]
|
|
|
+ print(f"predict_df shape: {predict_df.shape}")
|
|
|
predict_df['y_1'] = [x[1] for x in y_pred_proba_1]
|
|
|
print(f"predict_df shape: {predict_df.shape}")
|
|
|
|