xueyiming 6 mesi fa
parent
commit
f1fbcd8b83
2 ha cambiato i file con 287 aggiunte e 140 eliminazioni
  1. 286 139
      alg_growth_3rd_gh_reply_video_v1.py
  2. 1 1
      my_config.py

+ 286 - 139
alg_growth_3rd_gh_reply_video_v1.py

@@ -22,133 +22,244 @@ LOGGER = Log()
 BASE_GROUP_NAME = '3rd-party-base'
 EXPLORE1_GROUP_NAME = '3rd-party-explore1'
 EXPLORE2_GROUP_NAME = '3rd-party-explore2'
-#TODO: fetch gh_id from external data source
+# TODO: fetch gh_id from external data source
 GH_IDS = (
-'gh_01c93b07605f',
-'gh_041d1c819c30',
-'gh_04804a94e325',
-'gh_059a27ea86b2',
-'gh_06699758fa4b',
-'gh_0cc7c6d712eb',
-'gh_0d3c97cc30cc',
-'gh_11debb2c8392',
-'gh_126c99b39cea',
-'gh_133c36b99b14',
-'gh_143743361496',
-'gh_148aa4a776ce',
-'gh_184f2d765f55',
-'gh_197a0d8caa31',
-'gh_1b243f162cbd',
-'gh_1b8bfb5c4ffd',
-'gh_1c11651e0df4',
-'gh_1cbb453a800e',
-'gh_1da8f62f4a0d',
-'gh_1ff0c29f8408',
-'gh_210f7ce6f418',
-'gh_22cad14dc4ec',
-'gh_22f53f6a2b5d',
-'gh_23e084923def',
-'gh_23fa67ebb016',
-'gh_2450ad774945',
-'gh_250c51d5ce69',
-'gh_261bbd99a906',
-'gh_26f1353fda5a',
-'gh_2863155cedcb',
-'gh_2fbff340c683',
-'gh_30b472377707',
-'gh_330ef0db846d',
-'gh_33731afddbdb',
-'gh_33c26df4eab0',
-'gh_33e9e4cbed84',
-'gh_34820675d0fc',
-'gh_354ab82cf9b3',
-'gh_36e74017026e',
-'gh_37adcd637351',
-'gh_3afc3a8b8a3d',
-'gh_3dce33de6994',
-'gh_3ee85ba7c3ae',
-'gh_40ff43c50773',
-'gh_4175a8f745f6',
-'gh_449fb0c2d817',
-'gh_45be25d1c06b',
-'gh_491189a534f2',
-'gh_495d71abbda2',
-'gh_4c38b9d4474a',
-'gh_4d2f75c3c3fe',
-'gh_5044de6e1597',
-'gh_53759f90b0c5',
-'gh_543e6d7e15f3',
-'gh_5522900b6a67',
-'gh_55ac4e447179',
-'gh_56b65b7d4520',
-'gh_570967881eae',
-'gh_57bc9846c86a',
-'gh_57d2388bd01d',
-'gh_58cdb2f1f0d0',
-'gh_5e0cd3f7b457',
-'gh_5f0bb5822e10',
-'gh_5fffe35cc12a',
-'gh_63745bad4f21',
-'gh_6454c103be14',
-'gh_69808935bba0',
-'gh_6c7f73de400b',
-'gh_7a14b4c15090',
-'gh_7c89d5a3e745',
-'gh_7e33fbba4398',
-'gh_7e77b09bb4f5',
-'gh_7f062810b4e7',
-'gh_8157d8fd284e',
-'gh_83adb78f4ede',
-'gh_859aafbcda3d',
-'gh_86ca35774fcf',
-'gh_87eca527c626',
-'gh_8a29eebc2012',
-'gh_8b5c838ac19a',
-'gh_8b69b67ea723',
-'gh_8bf689ae15cc',
-'gh_8cc8ae6eb9a5',
-'gh_8d68e68f2d08',
-'gh_930b5ef5a185',
-'gh_93af434e3f47',
-'gh_98624814f69a',
-'gh_9d94775e8137',
-'gh_9e0c7a370aaf',
-'gh_9e0d149e2c0a',
-'gh_9ee5f5e8425f',
-'gh_a09594d52fda',
-'gh_a36405f4e5d3',
-'gh_a8851bfa953b',
-'gh_ac4072121e24',
-'gh_aed71f26e7e6',
-'gh_b63b9dde3f4b',
-'gh_b7cdece20099',
-'gh_ba870f8b178b',
-'gh_bb6775b47656',
-'gh_bf79e3645d7a',
-'gh_c1acd6bac0f8',
-'gh_c4708b8cfe39',
-'gh_c603033bf881',
-'gh_c8060587e6d1',
-'gh_cedc3c4eb48b',
-'gh_d219a0cc8a35',
-'gh_d2bb5f1b9498',
-'gh_d32daba8ccf8',
-'gh_d6e75ad9094f',
-'gh_dd54e30b03ad',
-'gh_e0ca8ba4ed91',
-'gh_e2318164f869',
-'gh_e4fb77b1023b',
-'gh_ecef1c08bcf4',
-'gh_ee5b4b07ed8b',
-'gh_ef699270bf64',
-'gh_f2a6c90c56cb',
-'gh_f46c6c9b53fa',
-'gh_f5120c12ee23',
-'gh_fb77872bf907',
-'gh_fc4ec610756e',
-'gh_ff16c412ab97',
-'gh_ff9fe99f2097',
+    'gh_2863155cedcb',
+    'gh_c1acd6bac0f8',
+    'gh_da993c5f7f64',
+    'gh_495d71abbda2',
+    'gh_e2318164f869',
+    'gh_fc4ec610756e',
+    'gh_2450ad774945',
+    'gh_175925e40318',
+    'gh_994adaf7a539',
+    'gh_250c51d5ce69',
+    'gh_37adcd637351',
+    'gh_a36405f4e5d3',
+    'gh_ee5b4b07ed8b',
+    'gh_11debb2c8392',
+    'gh_d645c1ef7fb0',
+    'gh_1899b728af86',
+    'gh_059a27ea86b2',
+    'gh_6454c103be14',
+    'gh_63745bad4f21',
+    'gh_8a29eebc2012',
+    'gh_57bc9846c86a',
+    'gh_570967881eae',
+    'gh_197a0d8caa31',
+    'gh_93af434e3f47',
+    'gh_184f2d765f55',
+    'gh_8157d8fd284e',
+    'gh_8e1d1f19d44f',
+    'gh_1da8f62f4a0d',
+    'gh_fd4df7c45bb9',
+    'gh_dcfcf74b0846',
+    'gh_3afc3a8b8a3d',
+    'gh_ef699270bf64',
+    'gh_ba870f8b178b',
+    'gh_58cdb2f1f0d0',
+    'gh_3dce33de6994',
+    'gh_543e6d7e15f3',
+    'gh_0d55fee6b78d',
+    'gh_1c11651e0df4',
+    'gh_7f4741dd5fea',
+    'gh_33e9e4cbed84',
+    'gh_23fa67ebb016',
+    'gh_33c26df4eab0',
+    'gh_01c93b07605f',
+    'gh_c655e3c8a121',
+    'gh_83adb78f4ede',
+    'gh_0cc7c6d712eb',
+    'gh_1b8bfb5c4ffd',
+    'gh_e4fb77b1023b',
+    'gh_f994f5d9a4b6',
+    'gh_e0ca8ba4ed91',
+    'gh_b2b4d5aa6b49',
+    'gh_53759f90b0c5',
+    'gh_d219a0cc8a35',
+    'gh_930b5ef5a185',
+    'gh_22cad14dc4ec',
+    'gh_8734c02f2983',
+    'gh_8d68e68f2d08',
+    'gh_c603033bf881',
+    'gh_55ac4e447179',
+    'gh_8b5c838ac19a',
+    'gh_aed71f26e7e6',
+    'gh_330ef0db846d',
+    'gh_87eca527c626',
+    'gh_7a14b4c15090',
+    'gh_b74693fed783',
+    'gh_e1594e6db64b',
+    'gh_d32daba8ccf8',
+    'gh_23e084923def',
+    'gh_148aa4a776ce',
+    'gh_0df4d6b647ea',
+    'gh_041d1c819c30',
+    'gh_7e33fbba4398',
+    'gh_354ab82cf9b3',
+    'gh_b1f1d7a1f351',
+    'gh_793647539ef5',
+    'gh_1ff0c29f8408',
+    'gh_ecef1c08bcf4',
+    'gh_22f53f6a2b5d',
+    'gh_34820675d0fc',
+    'gh_4175a8f745f6',
+    'gh_81145598368a',
+    'gh_5f0bb5822e10',
+    'gh_65d8db4e97ca',
+    'gh_a09594d52fda',
+    'gh_4411cf1e5f4e',
+    'gh_9ee5f5e8425f',
+    'gh_df24adad2521',
+    'gh_30b472377707',
+    'gh_bb6775b47656',
+    'gh_69808935bba0',
+    'gh_fb77872bf907',
+    'gh_830c4aa1b262',
+    'gh_b5393e35caa4',
+    'gh_fa7dceae7c9d',
+    'gh_449fb0c2d817',
+    'gh_d6e75ad9094f',
+    'gh_1cbb453a800e',
+    'gh_1b243f162cbd',
+    'gh_50db6881c86e',
+    'gh_9d94775e8137',
+    'gh_d37101fb9b98',
+    'gh_ed86d05703eb',
+    'gh_ac4072121e24',
+    'gh_620af8e24fb9',
+    'gh_ee4783ded544',
+    'gh_d2bb5f1b9498',
+    'gh_5044de6e1597',
+    'gh_d94de77a8d08',
+    'gh_98624814f69a',
+    'gh_4c38b9d4474a',
+    'gh_f2a6c90c56cb',
+    'gh_26f1353fda5a',
+    'gh_143743361496',
+    'gh_126c99b39cea',
+    'gh_53e6e0a1b1bd',
+    'gh_859aafbcda3d',
+    'gh_cfce2617bd82',
+    'gh_db8ea2bc6687',
+    'gh_c4708b8cfe39',
+    'gh_57d2388bd01d',
+    'gh_5fffe35cc12a',
+    'gh_45980a6448f3',
+    'gh_f5120c12ee23',
+    'gh_bf79e3645d7a',
+    'gh_6c6d81dd642d',
+    'gh_57ee6a6ef204',
+    'gh_45be25d1c06b',
+    'gh_3ee85ba7c3ae',
+    'gh_7c89d5a3e745',
+    'gh_c46be9ea4eef',
+    'gh_cedc3c4eb48b',
+    'gh_8a91fa7f32aa',
+    'gh_5207b355776f',
+    'gh_6c7f73de400b',
+    'gh_d2f3805f8fa3',
+    'gh_7dd47f8aca4e',
+    'gh_967f9abb9ccd',
+    'gh_f46c6c9b53fa',
+    'gh_086abf2a536b',
+    'gh_6e11282216f3',
+    'gh_f5332b8dfb63',
+    'gh_f78610e292ba',
+    'gh_06699758fa4b',
+    'gh_92323d0bea11',
+    'gh_517aed4e8197',
+    'gh_c80462b5a330',
+    'gh_1b1c3ced734e',
+    'gh_dd54e30b03ad',
+    'gh_cadd0ea4fab3',
+    'gh_ef07a709127e',
+    'gh_ab6ca922e605',
+    'gh_8b69b67ea723',
+    'gh_363c54315788',
+    'gh_a363987c60bf',
+    'gh_86ca35774fcf',
+    'gh_518694803ae7',
+    'gh_f98d5f17e9ea',
+    'gh_5e0cd3f7b457',
+    'gh_9e0d149e2c0a',
+    'gh_7e77b09bb4f5',
+    'gh_261bbd99a906',
+    'gh_2dc8e3a7b6c9',
+    'gh_1ec8dae66c97',
+    'gh_7f062810b4e7',
+    'gh_3c112c0c9c8b',
+    'gh_01cd19465b39',
+    'gh_8cc8ae6eb9a5',
+    'gh_210f7ce6f418',
+    'gh_04804a94e325',
+    'gh_4685665647f0',
+    'gh_d7fa96aeb839',
+    'gh_210cb680d83d',
+    'gh_862b00a394e3',
+    'gh_3cf7b310906a',
+    'gh_669555ebea28',
+    'gh_aaac62205137',
+    'gh_0a03f8fa63ba',
+    'gh_b8b2d4184832',
+    'gh_819a632d4bb1',
+    'gh_db09b87a0fc9',
+    'gh_b673c01e7bd8',
+    'gh_6da61a15044a',
+    'gh_2f1fab4efaef',
+    'gh_da22f64152d5',
+    'gh_ff9fe99f2097',
+    'gh_33731afddbdb',
+    'gh_4d2f75c3c3fe',
+    'gh_40ff43c50773',
+    'gh_56b65b7d4520',
+    'gh_ff16c412ab97',
+    'gh_8bf689ae15cc',
+    'gh_650b17dbba8f',
+    'gh_b63b9dde3f4b',
+    'gh_36e74017026e',
+    'gh_a8851bfa953b',
+    'gh_ec5beb465640',
+    'gh_133c36b99b14',
+    'gh_b144210318e5',
+    'gh_3bffce62dbb4',
+    'gh_2fbff340c683',
+    'gh_3ceae370dcf5',
+    'gh_530b634707b0',
+    'gh_b7cdece20099',
+    'gh_9e0c7a370aaf',
+    'gh_96412c0393e3',
+    'gh_c8060587e6d1',
+    'gh_0d3c97cc30cc',
+    'gh_491189a534f2',
+    'gh_fe9620386c2c',
+    'gh_9d50b7067f07',
+    'gh_e1331141406a',
+    'gh_d6db13fcf14d',
+    'gh_5522900b6a67',
+    'gh_a7c21403c493',
+    'gh_eeec7c2e28a5',
+    'gh_c783350a9660',
 )
+
+TARGET_GH_IDS = (
+    'gh_250c51d5ce69',
+    'gh_8a29eebc2012',
+    'gh_ff16c412ab97',
+    'gh_1014734791e0',
+    'gh_570967881eae',
+    'gh_a7c21403c493',
+    'gh_7f062810b4e7',
+    'gh_c8060587e6d1',
+    'gh_1da8f62f4a0d',
+    'gh_56b65b7d4520',
+    'gh_eeec7c2e28a5',
+    'gh_7c89d5a3e745',
+    'gh_ee5b4b07ed8b',
+    'gh_0d3c97cc30cc',
+    'gh_c783350a9660',
+)
+
 CDN_IMG_OPERATOR = "?x-oss-process=image/resize,m_fill,w_600,h_480,limit_0/format,jpg/watermark,image_eXNoL3BpYy93YXRlcm1hcmtlci9pY29uX3BsYXlfd2hpdGUucG5nP3gtb3NzLXByb2Nlc3M9aW1hZ2UvcmVzaXplLHdfMTQ0,g_center"
 
 ODS_PROJECT = "loghubods"
@@ -160,6 +271,7 @@ RDS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data'
 STATS_PERIOD_DAYS = 5
 SEND_N = 1
 
+
 def check_data_partition(project, table, data_dt, data_hr=None):
     """检查数据是否准备好"""
     try:
@@ -175,7 +287,7 @@ def check_data_partition(project, table, data_dt, data_hr=None):
 
 def get_last_strategy_result(project, rank_table, dt_version, key):
     strategy_df = get_odps_df_of_max_partition(
-        project, rank_table, { 'ctime': dt_version }
+        project, rank_table, {'ctime': dt_version}
     ).to_pandas()
     sub_df = strategy_df.query(f'strategy_key == "{key}"')
     sub_df = sub_df[['gh_id', 'video_id', 'strategy_key', 'sort']].drop_duplicates()
@@ -210,13 +322,14 @@ def process_reply_stats(project, table, period, run_dt):
     merged_df['score'] = merged_df['day0_return'] / (merged_df['send_count'] + 500)
     return merged_df
 
+
 def rank_for_layer1(run_dt, run_hour, project, table):
     # TODO: 加审核&退场
     df = get_odps_df_of_max_partition(project, table, {'dt': run_dt})
     df = df.to_pandas()
     # 确保重跑时可获得一致结果
     dt_version = f'{run_dt}{run_hour}'
-    np.random.seed(int(dt_version)+1)
+    np.random.seed(int(dt_version) + 1)
 
     # TODO: 修改权重计算策略
     df['score'] = df['rov']
@@ -226,7 +339,7 @@ def rank_for_layer1(run_dt, run_hour, project, table):
     sampled_df['strategy_key'] = EXPLORE1_GROUP_NAME
     sampled_df['dt_version'] = dt_version
 
-    gh_name_df = pd.DataFrame({'gh_id': GH_IDS + ('default', )})
+    gh_name_df = pd.DataFrame({'gh_id': GH_IDS + ('default',)})
     sampled_df['_tmpkey'] = 1
     gh_name_df['_tmpkey'] = 1
     extend_df = sampled_df.merge(gh_name_df, on='_tmpkey').drop('_tmpkey', axis=1)
@@ -234,12 +347,13 @@ def rank_for_layer1(run_dt, run_hour, project, table):
     result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
     return result_df
 
+
 def rank_for_layer2(run_dt, run_hour, project, stats_table, rank_table):
     stats_df = process_reply_stats(project, stats_table, STATS_PERIOD_DAYS, run_dt)
 
     # 确保重跑时可获得一致结果
     dt_version = f'{run_dt}{run_hour}'
-    np.random.seed(int(dt_version)+1)
+    np.random.seed(int(dt_version) + 1)
     # TODO: 计算账号间相关性
     ## 账号两两组合,取有RoVn数值视频的交集,单个账号内的RoVn(平滑后)组成向量
     ## 求向量相关系数或cosine相似度
@@ -278,10 +392,11 @@ def rank_for_layer2(run_dt, run_hour, project, stats_table, rank_table):
     result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
     return result_df
 
+
 def rank_for_base(run_dt, run_hour, project, stats_table, rank_table, stg_key):
     stats_df = process_reply_stats(project, stats_table, STATS_PERIOD_DAYS, run_dt)
 
-    #TODO: support to set base manually
+    # TODO: support to set base manually
     dt_version = f'{run_dt}{run_hour}'
 
     # 获取当前base信息, 策略表dt_version(ctime partition)采用当前时间
@@ -297,9 +412,9 @@ def rank_for_base(run_dt, run_hour, project, stats_table, rank_table, stg_key):
 
     stats_with_strategy_df = stats_df \
         .merge(
-            base_strategy_df,
-            on=['gh_id', 'video_id'],
-            how='left') \
+        base_strategy_df,
+        on=['gh_id', 'video_id'],
+        how='left') \
         .query('strategy_key.notna() or score > 0.1')
 
     # 合并default和分账号数据
@@ -310,9 +425,10 @@ def rank_for_base(run_dt, run_hour, project, stats_table, rank_table, stg_key):
         top_n = group_sorted.head(n)
         top_n['sort'] = range(1, len(top_n) + 1)
         return top_n
+
     ranked_df = grouped_stats_df.groupby('gh_id').apply(set_top_n, SEND_N)
     ranked_df = ranked_df.reset_index(drop=True)
-    #ranked_df['sort'] = grouped_stats_df.groupby('gh_id')['score'].rank(ascending=False)
+    # ranked_df['sort'] = grouped_stats_df.groupby('gh_id')['score'].rank(ascending=False)
     ranked_df['strategy_key'] = stg_key
     ranked_df['dt_version'] = dt_version
     ranked_df = ranked_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
@@ -320,20 +436,51 @@ def rank_for_base(run_dt, run_hour, project, stats_table, rank_table, stg_key):
 
 
 def check_result_data(df):
-    for gh_id in GH_IDS + ('default', ):
+    for gh_id in GH_IDS + ('default',):
         for key in (EXPLORE1_GROUP_NAME, EXPLORE2_GROUP_NAME, BASE_GROUP_NAME):
             sub_df = df.query(f'gh_id == "{gh_id}" and strategy_key == "{key}"')
             if len(sub_df) != SEND_N:
                 raise Exception(f"Result not enough for gh_id[{gh_id}]")
 
 
+def rank_for_base_designate(run_dt, run_hour, stg_key):
+    dt_version = f'{run_dt}{run_hour}'
+    ranked_df = pd.DataFrame()  # 初始化一个空的 DataFrame
+
+    for gh_id in GH_IDS + ('default',):
+        if gh_id in TARGET_GH_IDS:
+            temp_df = pd.DataFrame({
+                'strategy_key': [stg_key],  # 使用列表包裹
+                'dt_version': [dt_version],  # 使用列表包裹
+                'gh_id': [gh_id],  # 使用列表包裹
+                'sort': [1],  # 使用列表包裹
+                'video_id': [13586800],  # 使用列表包裹
+                'score': [0.5]  # 使用列表包裹
+            })
+        else:
+            temp_df = pd.DataFrame({
+                'strategy_key': [stg_key],  # 使用列表包裹
+                'dt_version': [dt_version],  # 使用列表包裹
+                'gh_id': [gh_id],  # 使用列表包裹
+                'sort': [1],  # 使用列表包裹
+                'video_id': [20463342],  # 使用列表包裹
+                'score': [0.5]  # 使用列表包裹
+            })
+        ranked_df = pd.concat([ranked_df, temp_df], ignore_index=True)
+    return ranked_df
+
+
 def build_and_transfer_data(run_dt, run_hour, project, **kwargs):
     dt_version = f'{run_dt}{run_hour}'
     dry_run = kwargs.get('dry_run', False)
 
-    layer1_rank = rank_for_layer1(run_dt, run_hour, ODS_PROJECT, EXPLORE_POOL_TABLE)
-    layer2_rank = rank_for_layer2(run_dt, run_hour, ODS_PROJECT, GH_REPLY_STATS_TABLE, ODPS_3RD_RANK_RESULT_TABLE)
-    base_rank = rank_for_base(run_dt, run_hour, ODS_PROJECT, GH_REPLY_STATS_TABLE, ODPS_3RD_RANK_RESULT_TABLE, BASE_GROUP_NAME)
+    # layer1_rank = rank_for_layer1(run_dt, run_hour, ODS_PROJECT, EXPLORE_POOL_TABLE)
+    # layer2_rank = rank_for_layer2(run_dt, run_hour, ODS_PROJECT, GH_REPLY_STATS_TABLE, ODPS_3RD_RANK_RESULT_TABLE)
+    # base_rank = rank_for_base(run_dt, run_hour, ODS_PROJECT, GH_REPLY_STATS_TABLE, ODPS_3RD_RANK_RESULT_TABLE,BASE_GROUP_NAME)
+    layer1_rank = rank_for_base_designate(run_dt, run_hour, EXPLORE1_GROUP_NAME)
+    layer2_rank = rank_for_base_designate(run_dt, run_hour, EXPLORE2_GROUP_NAME)
+    base_rank = rank_for_base_designate(run_dt, run_hour, BASE_GROUP_NAME)
+
     final_rank_df = pd.concat([layer1_rank, layer2_rank, base_rank]).reset_index(drop=True)
     check_result_data(final_rank_df)
 
@@ -358,7 +505,7 @@ def build_and_transfer_data(run_dt, run_hour, project, **kwargs):
     # save to ODPS
     t = odps_instance.get_table(ODPS_3RD_RANK_RESULT_TABLE)
     part_spec_dict = {'dt': run_dt, 'hour': run_hour, 'ctime': dt_version}
-    part_spec =','.join(['{}={}'.format(k, part_spec_dict[k]) for k in part_spec_dict.keys()])
+    part_spec = ','.join(['{}={}'.format(k, part_spec_dict[k]) for k in part_spec_dict.keys()])
     with t.open_writer(partition=part_spec, create_partition=True, overwrite=True) as writer:
         writer.write(list(final_df.itertuples(index=False)))
 

+ 1 - 1
my_config.py

@@ -2788,7 +2788,7 @@ def set_config():
     # 获取环境变量 ROV_OFFLINE_ENV
     env = os.environ.get('ROV_OFFLINE_ENV')
     # print("ROV_OFFLINE_ENV:{}".format(str(env)))
-    # env = 'dev'
+    env = 'dev'
     if env is None:
         # log_.error('ENV ERROR: is None!')
         return