Forráskód Böngészése

注释掉下线的任务

zhangbo 2 hónapja
szülő
commit
ef745aabcc
3 módosított fájl, 1079 hozzáadás és 2 törlés
  1. 2 2
      ad_threshold_update_task.sh
  2. 1000 0
      celibration/a.txt
  3. 77 0
      celibration/test.py

+ 2 - 2
ad_threshold_update_task.sh

@@ -3,14 +3,14 @@ echo $ROV_OFFLINE_ENV
 if [[ $ROV_OFFLINE_ENV == 'test' ]]; then
     cd /data2/rov-offline &&
     /root/anaconda3/bin/python /data2/rov-offline/ad_users_data_update.py &&
-    /root/anaconda3/bin/python /data2/rov-offline/ad_users_data_update_new.py &&
+#    /root/anaconda3/bin/python /data2/rov-offline/ad_users_data_update_new.py &&
     /root/anaconda3/bin/python /data2/rov-offline/ad_user_data_with_out_update.py &&
     /root/anaconda3/bin/python /data2/rov-offline/ad_video_data_update.py &&
     /root/anaconda3/bin/python /data2/rov-offline/ad_user_video_predict.py
 elif [[ $ROV_OFFLINE_ENV == 'pro' ]]; then
     cd /data/rov-offline &&
     /root/anaconda3/bin/python /data/rov-offline/ad_users_data_update.py &&
-    /root/anaconda3/bin/python /data/rov-offline/ad_users_data_update_new.py &&
+#    /root/anaconda3/bin/python /data/rov-offline/ad_users_data_update_new.py &&
     /root/anaconda3/bin/python /data/rov-offline/ad_user_data_with_out_update.py &&
     /root/anaconda3/bin/python /data/rov-offline/ad_video_data_update.py &&
     /root/anaconda3/bin/python /data/rov-offline/ad_user_video_predict.py

+ 1000 - 0
celibration/a.txt

@@ -0,0 +1,1000 @@
+0.001026	0.000411
+0.001397	0.000467
+0.001617	0.00058
+0.001791	0.000835
+0.001938	0.000977
+0.002068	0.000835
+0.002185	0.000878
+0.002291	0.001005
+0.002387	0.001402
+0.002474	0.001515
+0.002555	0.001246
+0.00263	0.001373
+0.002699	0.001501
+0.002764	0.001656
+0.002824	0.001444
+0.002879	0.001727
+0.002932	0.001586
+0.002982	0.00201
+0.003029	0.001926
+0.003073	0.002138
+0.003116	0.002025
+0.003156	0.00201
+0.003195	0.001996
+0.003233	0.002039
+0.003269	0.002195
+0.003305	0.001982
+0.003339	0.002407
+0.003371	0.002039
+0.003403	0.002379
+0.003433	0.002138
+0.003462	0.002534
+0.003491	0.002364
+0.00352	0.002648
+0.003547	0.002548
+0.003574	0.002336
+0.003601	0.002449
+0.003626	0.002718
+0.003651	0.002138
+0.003677	0.002492
+0.003701	0.002478
+0.003725	0.00303
+0.003748	0.002789
+0.003772	0.002449
+0.003795	0.002902
+0.003817	0.002648
+0.003839	0.002846
+0.003861	0.002789
+0.003882	0.003129
+0.003904	0.003129
+0.003925	0.002832
+0.003945	0.003455
+0.003964	0.003101
+0.003985	0.003115
+0.004004	0.003341
+0.004024	0.00354
+0.004044	0.003256
+0.004062	0.003398
+0.00408	0.003412
+0.004098	0.002832
+0.004117	0.003384
+0.004135	0.003327
+0.004153	0.003285
+0.00417	0.003469
+0.004188	0.003412
+0.004205	0.003893
+0.004222	0.003398
+0.004239	0.003327
+0.004256	0.003653
+0.004272	0.003058
+0.004288	0.003497
+0.004305	0.003483
+0.004321	0.003256
+0.004336	0.003355
+0.004352	0.003355
+0.004368	0.003341
+0.004383	0.003511
+0.004398	0.003653
+0.004414	0.003497
+0.004429	0.003568
+0.004444	0.003893
+0.004459	0.003936
+0.004474	0.003582
+0.004489	0.003936
+0.004504	0.003893
+0.004518	0.003823
+0.004533	0.004035
+0.004548	0.003469
+0.004562	0.003908
+0.004576	0.003653
+0.004591	0.004021
+0.004605	0.003879
+0.004618	0.003667
+0.004632	0.00378
+0.004647	0.003993
+0.00466	0.003738
+0.004674	0.003794
+0.004687	0.004332
+0.0047	0.00395
+0.004714	0.003752
+0.004727	0.004035
+0.00474	0.003823
+0.004753	0.00395
+0.004766	0.004049
+0.00478	0.004361
+0.004793	0.004531
+0.004806	0.004318
+0.004818	0.004318
+0.004831	0.003809
+0.004844	0.004148
+0.004857	0.003922
+0.00487	0.004247
+0.004883	0.004531
+0.004895	0.004531
+0.004907	0.004361
+0.00492	0.004162
+0.004932	0.004644
+0.004944	0.004431
+0.004956	0.004262
+0.004968	0.004148
+0.00498	0.004658
+0.004992	0.004403
+0.005004	0.004488
+0.005016	0.004672
+0.005028	0.004332
+0.005039	0.004616
+0.005051	0.004488
+0.005062	0.004049
+0.005074	0.004743
+0.005085	0.004743
+0.005097	0.004361
+0.005108	0.004148
+0.00512	0.005139
+0.005131	0.004644
+0.005143	0.004856
+0.005155	0.005196
+0.005166	0.005154
+0.005177	0.004785
+0.005189	0.004969
+0.0052	0.004276
+0.005211	0.004644
+0.005221	0.004644
+0.005232	0.004856
+0.005243	0.004757
+0.005254	0.004304
+0.005265	0.005097
+0.005277	0.004885
+0.005288	0.0048
+0.005298	0.004842
+0.005309	0.004757
+0.00532	0.004984
+0.005331	0.005083
+0.005342	0.004814
+0.005353	0.0047
+0.005364	0.005139
+0.005375	0.005281
+0.005386	0.004743
+0.005397	0.005154
+0.005407	0.004785
+0.005418	0.005139
+0.00543	0.00521
+0.00544	0.004757
+0.005451	0.005069
+0.005461	0.004899
+0.005471	0.004715
+0.005482	0.005196
+0.005493	0.004927
+0.005503	0.005408
+0.005514	0.005026
+0.005525	0.005182
+0.005536	0.004969
+0.005546	0.005012
+0.005556	0.005295
+0.005567	0.00504
+0.005577	0.005451
+0.005587	0.005196
+0.005597	0.005592
+0.005608	0.005139
+0.005618	0.0048
+0.005629	0.005408
+0.005639	0.005097
+0.005649	0.005479
+0.00566	0.005281
+0.00567	0.005295
+0.00568	0.005876
+0.00569	0.004842
+0.0057	0.005507
+0.00571	0.00589
+0.00572	0.005196
+0.00573	0.005663
+0.00574	0.005125
+0.005751	0.006003
+0.00576	0.005762
+0.00577	0.005196
+0.005781	0.005961
+0.005791	0.005168
+0.005801	0.005408
+0.005811	0.005423
+0.005821	0.004913
+0.005831	0.00589
+0.005841	0.005706
+0.005851	0.005805
+0.005861	0.005139
+0.005871	0.004984
+0.005881	0.005423
+0.00589	0.00572
+0.005901	0.005861
+0.00591	0.006003
+0.005919	0.005621
+0.005929	0.006683
+0.005939	0.005493
+0.00595	0.006003
+0.005959	0.006272
+0.005969	0.005621
+0.005979	0.005989
+0.005989	0.006173
+0.005998	0.006074
+0.006007	0.006215
+0.006017	0.006074
+0.006027	0.005295
+0.006036	0.006541
+0.006046	0.006046
+0.006055	0.005663
+0.006065	0.006074
+0.006074	0.006258
+0.006084	0.005437
+0.006094	0.006031
+0.006104	0.006456
+0.006114	0.005762
+0.006124	0.005876
+0.006133	0.006116
+0.006143	0.0063
+0.006153	0.006116
+0.006162	0.006569
+0.006171	0.006385
+0.006181	0.006046
+0.006191	0.00589
+0.0062	0.006541
+0.006209	0.006385
+0.006218	0.005762
+0.006228	0.005706
+0.006237	0.005904
+0.006247	0.006838
+0.006257	0.006329
+0.006266	0.006598
+0.006276	0.007122
+0.006286	0.006442
+0.006295	0.006003
+0.006304	0.006697
+0.006314	0.006145
+0.006323	0.006315
+0.006333	0.006399
+0.006342	0.007065
+0.006352	0.006414
+0.006361	0.006399
+0.006371	0.005791
+0.006381	0.006187
+0.00639	0.006399
+0.006399	0.006952
+0.006408	0.006555
+0.006418	0.006527
+0.006427	0.00681
+0.006437	0.006315
+0.006446	0.006994
+0.006455	0.006739
+0.006465	0.006414
+0.006475	0.006923
+0.006484	0.006442
+0.006494	0.006513
+0.006504	0.006555
+0.006513	0.006598
+0.006522	0.006456
+0.006532	0.006697
+0.006542	0.006697
+0.006551	0.006286
+0.00656	0.006315
+0.006569	0.006739
+0.006579	0.006881
+0.006589	0.006697
+0.006599	0.006612
+0.006608	0.00623
+0.006617	0.006258
+0.006626	0.006739
+0.006636	0.006683
+0.006646	0.00715
+0.006655	0.006725
+0.006664	0.00698
+0.006674	0.007065
+0.006683	0.006456
+0.006693	0.007093
+0.006702	0.007405
+0.006711	0.006697
+0.00672	0.007235
+0.00673	0.006725
+0.00674	0.006668
+0.006749	0.006513
+0.006758	0.007291
+0.006768	0.007008
+0.006777	0.007008
+0.006787	0.006923
+0.006797	0.006654
+0.006807	0.006258
+0.006816	0.00698
+0.006825	0.006626
+0.006835	0.006329
+0.006845	0.006668
+0.006855	0.006753
+0.006865	0.00698
+0.006874	0.00715
+0.006883	0.006768
+0.006893	0.007362
+0.006902	0.006725
+0.006912	0.006357
+0.006921	0.007575
+0.00693	0.006329
+0.00694	0.006215
+0.00695	0.007348
+0.00696	0.007334
+0.006969	0.006867
+0.006979	0.007065
+0.006989	0.007461
+0.006998	0.007532
+0.007008	0.007419
+0.007018	0.007192
+0.007028	0.007334
+0.007038	0.007461
+0.007048	0.007475
+0.007057	0.007206
+0.007066	0.007744
+0.007075	0.007178
+0.007085	0.007575
+0.007095	0.006584
+0.007104	0.007334
+0.007114	0.007136
+0.007123	0.008367
+0.007132	0.007348
+0.007142	0.007008
+0.007152	0.007702
+0.007161	0.007221
+0.00717	0.008183
+0.00718	0.007504
+0.00719	0.007221
+0.007199	0.00756
+0.007209	0.00756
+0.00722	0.007844
+0.00723	0.007022
+0.007239	0.008127
+0.007249	0.007631
+0.007259	0.006768
+0.007269	0.007532
+0.007279	0.007504
+0.007289	0.00715
+0.0073	0.007929
+0.00731	0.007532
+0.00732	0.008056
+0.00733	0.007617
+0.007341	0.007787
+0.007352	0.007235
+0.007362	0.007221
+0.007372	0.007603
+0.007381	0.007631
+0.007391	0.008056
+0.007402	0.007405
+0.007412	0.007844
+0.007422	0.00766
+0.007432	0.007532
+0.007442	0.007461
+0.007451	0.008509
+0.007462	0.007829
+0.007471	0.008056
+0.007482	0.00715
+0.007493	0.008863
+0.007503	0.007419
+0.007513	0.007249
+0.007523	0.008212
+0.007533	0.008127
+0.007543	0.008127
+0.007554	0.007645
+0.007565	0.007037
+0.007575	0.008084
+0.007586	0.007999
+0.007597	0.007872
+0.007608	0.008268
+0.007618	0.007518
+0.007628	0.008042
+0.007639	0.007957
+0.007649	0.008325
+0.00766	0.007589
+0.00767	0.008226
+0.007681	0.0079
+0.007691	0.00773
+0.007702	0.007221
+0.007711	0.008962
+0.007722	0.008183
+0.007733	0.008382
+0.007743	0.008311
+0.007754	0.008297
+0.007765	0.00858
+0.007777	0.008268
+0.007788	0.00766
+0.007799	0.00732
+0.00781	0.007886
+0.00782	0.008254
+0.007832	0.008226
+0.007843	0.007999
+0.007854	0.008212
+0.007865	0.008183
+0.007876	0.007844
+0.007886	0.007914
+0.007897	0.007688
+0.007908	0.008311
+0.007919	0.00824
+0.007931	0.008594
+0.007943	0.008325
+0.007954	0.007688
+0.007966	0.008311
+0.007977	0.007603
+0.007989	0.007702
+0.008	0.008877
+0.008012	0.008551
+0.008023	0.008537
+0.008035	0.008297
+0.008047	0.008693
+0.008058	0.008523
+0.008069	0.008183
+0.00808	0.008849
+0.008092	0.008736
+0.008103	0.009089
+0.008115	0.008056
+0.008127	0.008835
+0.008138	0.008693
+0.008149	0.008721
+0.008161	0.00841
+0.008173	0.008891
+0.008184	0.008467
+0.008196	0.007773
+0.008208	0.008849
+0.008221	0.008566
+0.008233	0.008594
+0.008245	0.007787
+0.008257	0.008764
+0.00827	0.008382
+0.008282	0.00933
+0.008294	0.009132
+0.008307	0.008721
+0.008319	0.009585
+0.008331	0.008042
+0.008343	0.00899
+0.008354	0.009033
+0.008367	0.0095
+0.008379	0.008113
+0.008391	0.008537
+0.008404	0.008905
+0.008417	0.009755
+0.008429	0.008651
+0.008442	0.008721
+0.008455	0.008636
+0.008466	0.00933
+0.008479	0.008452
+0.008492	0.009543
+0.008504	0.008934
+0.008517	0.009189
+0.00853	0.008736
+0.008542	0.009075
+0.008555	0.009231
+0.008567	0.00858
+0.00858	0.008325
+0.008593	0.009203
+0.008606	0.009571
+0.008618	0.009628
+0.008631	0.009075
+0.008645	0.009812
+0.008658	0.009939
+0.008672	0.009089
+0.008685	0.009245
+0.008699	0.008891
+0.008712	0.009174
+0.008724	0.009274
+0.008737	0.010052
+0.00875	0.009033
+0.008763	0.009274
+0.008777	0.009189
+0.008791	0.009911
+0.008804	0.009712
+0.008817	0.009585
+0.00883	0.00933
+0.008843	0.010109
+0.008856	0.009939
+0.008869	0.009528
+0.008883	0.009203
+0.008896	0.009755
+0.00891	0.009897
+0.008924	0.009684
+0.008938	0.009967
+0.008952	0.00967
+0.008966	0.009472
+0.008981	0.009642
+0.008995	0.010038
+0.009009	0.009769
+0.009023	0.009118
+0.009037	0.009373
+0.009051	0.009458
+0.009066	0.009599
+0.00908	0.009882
+0.009094	0.01001
+0.009107	0.009288
+0.009122	0.01093
+0.009137	0.009698
+0.009151	0.01042
+0.009166	0.009812
+0.00918	0.009472
+0.009194	0.010477
+0.00921	0.009925
+0.009225	0.009528
+0.009239	0.010576
+0.009254	0.009967
+0.009268	0.009797
+0.009283	0.010435
+0.009299	0.010519
+0.009314	0.010081
+0.009328	0.00984
+0.009342	0.01001
+0.009358	0.010519
+0.009372	0.010236
+0.009388	0.009826
+0.009404	0.010505
+0.009419	0.009797
+0.009434	0.010534
+0.009449	0.009727
+0.009464	0.010024
+0.00948	0.010519
+0.009495	0.011242
+0.009511	0.01035
+0.009526	0.010406
+0.009542	0.009741
+0.009559	0.011128
+0.009575	0.010774
+0.009591	0.010845
+0.009606	0.010293
+0.009621	0.010307
+0.009637	0.009925
+0.009653	0.010619
+0.00967	0.010534
+0.009686	0.010633
+0.009703	0.011142
+0.009719	0.009996
+0.009735	0.010505
+0.009751	0.01093
+0.009766	0.010916
+0.009783	0.010463
+0.009801	0.011496
+0.009816	0.011298
+0.009832	0.010902
+0.009847	0.010435
+0.009863	0.010208
+0.00988	0.011284
+0.009896	0.011567
+0.009912	0.010081
+0.009929	0.010095
+0.009946	0.010619
+0.009962	0.011072
+0.009979	0.010732
+0.009996	0.010293
+0.010014	0.011355
+0.010032	0.010774
+0.010049	0.010902
+0.010066	0.011213
+0.010083	0.010435
+0.0101	0.011015
+0.010118	0.010604
+0.010136	0.011199
+0.010153	0.010888
+0.010169	0.011992
+0.010187	0.011298
+0.010204	0.011312
+0.010221	0.010873
+0.010239	0.010689
+0.010257	0.011638
+0.010275	0.012091
+0.01029	0.011751
+0.010309	0.010293
+0.010327	0.011666
+0.010346	0.010987
+0.010363	0.011822
+0.01038	0.01059
+0.010397	0.011227
+0.010415	0.011242
+0.010433	0.011978
+0.010452	0.011539
+0.01047	0.010859
+0.010489	0.011242
+0.010508	0.011426
+0.010527	0.012728
+0.010546	0.011879
+0.010564	0.011879
+0.010582	0.01185
+0.010602	0.011921
+0.01062	0.011638
+0.010638	0.011411
+0.010656	0.011695
+0.010675	0.012119
+0.010695	0.01178
+0.010715	0.012402
+0.010733	0.011836
+0.010752	0.011539
+0.010771	0.01185
+0.010791	0.011808
+0.010811	0.011511
+0.010829	0.011893
+0.010848	0.012841
+0.010869	0.012218
+0.010889	0.012431
+0.010908	0.012091
+0.010928	0.012671
+0.010947	0.01253
+0.010965	0.011638
+0.010984	0.012289
+0.011004	0.012374
+0.011025	0.01219
+0.011045	0.012261
+0.011065	0.012402
+0.011084	0.012034
+0.011104	0.012657
+0.011124	0.011751
+0.011144	0.0127
+0.011162	0.012587
+0.011181	0.012799
+0.011201	0.01253
+0.011223	0.012077
+0.011243	0.012714
+0.011263	0.013606
+0.011283	0.013521
+0.011304	0.012587
+0.011324	0.012841
+0.011345	0.013068
+0.011365	0.012502
+0.011386	0.012502
+0.011404	0.013054
+0.011425	0.012516
+0.011445	0.013988
+0.011463	0.013153
+0.011484	0.012799
+0.011503	0.012742
+0.011525	0.012813
+0.011547	0.013266
+0.011569	0.012388
+0.011591	0.012487
+0.011613	0.013224
+0.011635	0.013663
+0.011658	0.012318
+0.011681	0.013875
+0.011703	0.012983
+0.011724	0.013209
+0.011747	0.013054
+0.011769	0.014144
+0.011789	0.014413
+0.011813	0.013875
+0.011836	0.014201
+0.011859	0.01345
+0.011882	0.014696
+0.011903	0.013011
+0.011926	0.013493
+0.011947	0.014229
+0.011969	0.013507
+0.011989	0.014059
+0.01201	0.013889
+0.012033	0.014017
+0.012055	0.013394
+0.012076	0.013025
+0.0121	0.014045
+0.012121	0.014045
+0.012142	0.014101
+0.012165	0.014484
+0.012189	0.01447
+0.012212	0.014328
+0.012235	0.015022
+0.012255	0.013903
+0.012277	0.013988
+0.012301	0.013762
+0.012325	0.01413
+0.012349	0.013804
+0.012372	0.013181
+0.012395	0.014271
+0.01242	0.013096
+0.012444	0.014512
+0.012467	0.013988
+0.012492	0.013804
+0.012516	0.014498
+0.01254	0.014569
+0.012564	0.014243
+0.012589	0.014894
+0.012611	0.015234
+0.012634	0.014328
+0.012657	0.01379
+0.012683	0.014569
+0.012707	0.014724
+0.012732	0.015404
+0.012755	0.014668
+0.01278	0.014639
+0.012803	0.015517
+0.012828	0.014739
+0.012851	0.014059
+0.012873	0.015376
+0.012896	0.01539
+0.012919	0.014809
+0.012943	0.01447
+0.012966	0.015376
+0.01299	0.015107
+0.013016	0.014073
+0.013042	0.015319
+0.013068	0.014724
+0.013093	0.014753
+0.013121	0.01454
+0.013146	0.015093
+0.013171	0.015163
+0.013197	0.0159
+0.013224	0.015574
+0.013251	0.015107
+0.013279	0.015489
+0.013307	0.01556
+0.013333	0.015546
+0.013359	0.014484
+0.013386	0.014824
+0.013414	0.015843
+0.013438	0.015503
+0.013464	0.015461
+0.013491	0.0159
+0.013515	0.016069
+0.013543	0.015362
+0.013569	0.017018
+0.013597	0.015333
+0.013625	0.0158
+0.013654	0.015885
+0.013682	0.016055
+0.01371	0.015758
+0.013739	0.014965
+0.013768	0.014682
+0.013797	0.015036
+0.013827	0.016098
+0.013857	0.015616
+0.013885	0.01597
+0.013915	0.015489
+0.013946	0.015404
+0.013976	0.016508
+0.014006	0.016098
+0.014036	0.015376
+0.014067	0.016154
+0.014095	0.016324
+0.014121	0.017089
+0.014152	0.015616
+0.014185	0.015687
+0.014216	0.016041
+0.014245	0.015645
+0.014278	0.016466
+0.01431	0.015107
+0.014342	0.017117
+0.014374	0.016806
+0.014408	0.016055
+0.01444	0.01757
+0.01447	0.015588
+0.014503	0.016622
+0.014538	0.017358
+0.01457	0.016225
+0.014599	0.016919
+0.014633	0.017528
+0.014664	0.0158
+0.014699	0.016876
+0.014734	0.016494
+0.014767	0.016692
+0.014805	0.016197
+0.014842	0.016296
+0.014877	0.01791
+0.01491	0.017471
+0.014944	0.017896
+0.014979	0.016055
+0.015017	0.016735
+0.015058	0.017584
+0.015095	0.018207
+0.015133	0.0174
+0.01517	0.017344
+0.01521	0.016735
+0.015249	0.017386
+0.015289	0.017145
+0.015326	0.017896
+0.015365	0.017528
+0.015405	0.01716
+0.015442	0.01774
+0.01548	0.017967
+0.015523	0.017018
+0.015566	0.018604
+0.015606	0.016947
+0.015649	0.018108
+0.015692	0.017613
+0.015733	0.01859
+0.015771	0.018505
+0.015814	0.016707
+0.015858	0.016905
+0.015902	0.018391
+0.015945	0.019156
+0.015985	0.018264
+0.016027	0.017655
+0.016072	0.017429
+0.016121	0.017853
+0.016171	0.017457
+0.016214	0.01859
+0.016262	0.018646
+0.016312	0.018547
+0.016358	0.01849
+0.016405	0.018618
+0.016455	0.017556
+0.016503	0.018165
+0.016552	0.018759
+0.016603	0.018788
+0.016655	0.019099
+0.016707	0.018391
+0.016757	0.017967
+0.016805	0.017698
+0.016852	0.018221
+0.0169	0.018788
+0.016951	0.018986
+0.017005	0.018094
+0.017062	0.018547
+0.017117	0.018986
+0.017174	0.019326
+0.017233	0.019014
+0.017291	0.019651
+0.017349	0.018844
+0.017407	0.01859
+0.01747	0.019552
+0.01753	0.019453
+0.017593	0.019864
+0.017655	0.019439
+0.01772	0.018731
+0.017782	0.019651
+0.017845	0.019099
+0.01791	0.019793
+0.017975	0.019935
+0.018042	0.020388
+0.018107	0.021138
+0.018174	0.019538
+0.018243	0.019779
+0.018313	0.020699
+0.018383	0.021096
+0.018457	0.019666
+0.018531	0.020657
+0.018604	0.020104
+0.018678	0.02128
+0.018758	0.020005
+0.018835	0.02094
+0.018912	0.021223
+0.01899	0.020529
+0.019069	0.019793
+0.019148	0.021195
+0.019228	0.021209
+0.019307	0.021662
+0.019387	0.021803
+0.019467	0.021874
+0.019546	0.021209
+0.019623	0.020784
+0.019707	0.02186
+0.019794	0.022002
+0.019879	0.022257
+0.019964	0.023078
+0.020049	0.023064
+0.020136	0.022058
+0.020224	0.021464
+0.020316	0.022526
+0.020404	0.022412
+0.020498	0.022724
+0.020593	0.02329
+0.020689	0.022993
+0.020788	0.023432
+0.020884	0.023007
+0.020981	0.023998
+0.021079	0.022596
+0.021178	0.022143
+0.021276	0.023092
+0.021379	0.023701
+0.021481	0.024508
+0.021583	0.023871
+0.021685	0.024295
+0.02179	0.025046
+0.021898	0.024224
+0.022004	0.025131
+0.022113	0.02683
+0.022224	0.024621
+0.022334	0.024578
+0.022447	0.025839
+0.022559	0.02472
+0.022672	0.024083
+0.02279	0.02506
+0.02291	0.024932
+0.023032	0.025654
+0.023151	0.025357
+0.023272	0.025754
+0.023395	0.026915
+0.023519	0.027311
+0.023646	0.025853
+0.023774	0.02649
+0.0239	0.026164
+0.024021	0.0254
+0.024148	0.026759
+0.024279	0.027325
+0.024413	0.027184
+0.024548	0.02598
+0.024677	0.027891
+0.024802	0.027665
+0.024945	0.02758
+0.025093	0.028458
+0.025243	0.026787
+0.025395	0.027948
+0.025549	0.02792
+0.025702	0.029123
+0.02586	0.02826
+0.026019	0.027042
+0.026181	0.027537
+0.026346	0.029194
+0.026515	0.028967
+0.026685	0.029973
+0.026862	0.029817
+0.027047	0.028967
+0.027232	0.029491
+0.027419	0.03027
+0.027611	0.029704
+0.027802	0.030128
+0.027994	0.030341
+0.028191	0.030766
+0.028399	0.031035
+0.02861	0.030624
+0.028818	0.030935
+0.029033	0.030737
+0.029259	0.030709
+0.029481	0.03095
+0.029703	0.031827
+0.029928	0.033116
+0.030164	0.031657
+0.030408	0.031842
+0.030649	0.033102
+0.030877	0.033965
+0.031119	0.033894
+0.031369	0.033696
+0.03162	0.033909
+0.031885	0.034758
+0.032163	0.034248
+0.032447	0.034829
+0.032742	0.034517
+0.033024	0.035962
+0.033329	0.034517
+0.033644	0.036032
+0.033955	0.036542
+0.034284	0.035565
+0.034631	0.037335
+0.034987	0.036599
+0.035342	0.035466
+0.035698	0.037972
+0.03606	0.038581
+0.03644	0.038383
+0.036828	0.038383
+0.037226	0.039317
+0.037616	0.039798
+0.038006	0.040152
+0.038436	0.040152
+0.038873	0.040889
+0.039338	0.038906
+0.039794	0.040039
+0.040268	0.041526
+0.040741	0.039926
+0.041275	0.043267
+0.041835	0.042191
+0.042414	0.043706
+0.042981	0.043324
+0.043586	0.042842
+0.044219	0.044626
+0.044906	0.045391
+0.045618	0.046
+0.046398	0.047373
+0.047229	0.046736
+0.048117	0.045547
+0.049026	0.048378
+0.05	0.049355
+0.051045	0.050318
+0.05219	0.049454
+0.053419	0.05322
+0.054741	0.052215
+0.056164	0.055217
+0.057699	0.055344
+0.059382	0.056661
+0.061226	0.058161
+0.063251	0.057878
+0.065502	0.061248
+0.068025	0.062635
+0.070872	0.065467
+0.07413	0.067492
+0.077943	0.068214
+0.082449	0.072079
+0.087913	0.074656
+0.094806	0.079243
+0.103902	0.081013
+0.117	0.090031
+0.139164	0.099517
+0.210237	0.122527

+ 77 - 0
celibration/test.py

@@ -0,0 +1,77 @@
+import numpy as np
+import pandas as pd
+from scipy.optimize import minimize
+from sklearn.metrics import mean_squared_error
+
+# 1. 读取数据
+# 假设文件名为 "data.csv",有两列:预测值 (pred) 和真实值 (label)
+file_path = "a.txt"
+y_pred = []
+y_true = []
+with open(file_path, 'r') as f:
+    for line in f.readlines():
+        lines = line.strip().split("\t")
+        y_pred.append(float(lines[0]))
+        y_true.append(float(lines[1]))
+y_pred = np.array(y_pred)
+y_true = np.array(y_true)
+# 2. 定义对数-线性缩放函数
+def logistic_scaling(pred, a, b):
+    """
+    对数-线性缩放函数
+    :param pred: 原始预测值 (范围 0 到 1)
+    :param a: 缩放参数
+    :param b: 偏移参数
+    :return: 校准后的预测值
+    """
+    # logit_pred = np.log(pred / (1 - pred))  # 计算 logit
+    # calibrated_logit = a * logit_pred + b  # 线性变换
+    # return 1 / (1 + np.exp(-calibrated_logit))  # 通过 Sigmoid 归一化
+    return np.power(pred + a, b)
+
+# 3. 定义优化目标函数
+def objective(params, y_pred, y_true):
+    """
+    目标函数,用于优化 a 和 b
+    :param params: 待优化的参数 (a, b)
+    :param y_pred: 原始预测值
+    :param y_true: 真实值 (连续值)
+    :return: MSE 损失
+    """
+    a, b = params
+    # 使用 Logistic Scaling 校准预测值
+    calibrated_pred = logistic_scaling(y_pred, a, b)
+    # 计算均方误差 (MSE)
+    return mean_squared_error(y_true, calibrated_pred)
+
+# 4. 优化参数
+# 初始化参数 a=1, b=0
+initial_params = [0.0, 1.0]
+
+# 使用 scipy.optimize.minimize 进行优化
+result = minimize(objective, initial_params, args=(y_pred, y_true), method='L-BFGS-B')
+
+# 获取优化后的参数 a 和 b
+optimized_a, optimized_b = result.x
+print(f"Optimized a: {optimized_a}, Optimized b: {optimized_b}")
+
+# 5. 应用校准模型
+calibrated_preds = logistic_scaling(y_pred, optimized_a, optimized_b)
+
+
+# 7. 验证效果
+# 计算校准前后的 MSE
+original_mse = mean_squared_error(y_true, y_pred)
+calibrated_mse = mean_squared_error(y_true, calibrated_preds)
+
+print(f"Original MSE: {original_mse:.6f}")
+print(f"Calibrated MSE: {calibrated_mse:.6f}")
+
+def calibration_function(p, x0=0.07, k1=15, k2=15, p_max=0.13):
+    # Sigmoid 平滑校正
+    sigmoid_part = 1 / (1 + np.exp(-k1 * (p - x0)))
+    # 线性与非线性的平滑过渡
+    calibrated = p + sigmoid_part / (1 + np.exp(-k2 * (p - x0))) * (p_max - p)
+    return calibrated
+
+print(calibration_function(0.00001))