|
@@ -29,11 +29,27 @@ RULE_PARAMS = {
|
|
|
'view_type': 'video-show-region', 'platform_return_rate': 0.001,
|
|
|
'region_24h_rule_key': 'rule66', '24h_rule_key': 'rule66'
|
|
|
},
|
|
|
+ 'rule67': {
|
|
|
+ 'view_type': 'video-show-region', 'platform_return_rate': 0.001,
|
|
|
+ 'region_24h_rule_key': 'rule66', '24h_rule_key': 'rule66', 'h_rule_key': 'rule66'
|
|
|
+ },
|
|
|
+ 'rule68': {
|
|
|
+ 'view_type': 'video-show-region', 'platform_return_rate': 0.001,
|
|
|
+ 'region_24h_rule_key': 'rule66', '24h_rule_key': 'rule66',
|
|
|
+ 'score_func': 'back_rate_exponential_weighting1'
|
|
|
+ },
|
|
|
+ 'rule69': {
|
|
|
+ 'view_type': 'video-show-region', 'platform_return_rate': 0.001,
|
|
|
+ 'region_24h_rule_key': 'rule66', '24h_rule_key': 'rule66',
|
|
|
+ },
|
|
|
},
|
|
|
'data_params': config_.DATA_PARAMS,
|
|
|
'params_list': [
|
|
|
# 532
|
|
|
{'data': 'data66', 'rule': 'rule66'},
|
|
|
+ {'data': 'data66', 'rule': 'rule67'}, # 523->510
|
|
|
+ {'data': 'data66', 'rule': 'rule68'}, # 523->514
|
|
|
+ {'data': 'data66', 'rule': 'rule69'}, # 523->518
|
|
|
],
|
|
|
}
|
|
|
|
|
@@ -616,75 +632,77 @@ def video_rank(df, now_date, now_h, rule_key, param, region, data_key, rule_rank
|
|
|
h_recall_df = h_recall_df.drop_duplicates(subset=['videoid'], keep='first')
|
|
|
h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
|
|
|
|
|
|
+ log_.info(f"各种规则过滤后,一共有多少个视频 = {len(h_recall_df)}")
|
|
|
# 增加打捞的优质视频
|
|
|
if add_videos_with_pre_h is True:
|
|
|
add_func = param.get('add_func', None)
|
|
|
h_recall_df = add_videos(initial_df=h_recall_df, now_date=now_date, rule_key=rule_key,
|
|
|
region=region, data_key=data_key, hour_count=hour_count, top=10, add_func=add_func)
|
|
|
-
|
|
|
+ log_.info(f"打捞优质视频完成")
|
|
|
h_recall_videos = h_recall_df['videoid'].to_list()
|
|
|
- # log_.info(f'h_recall videos count = {len(h_recall_videos)}')
|
|
|
-
|
|
|
+ log_.info(f"各种规则增加后,一共有多少个视频 = {len(h_recall_df)}")
|
|
|
# 视频状态过滤
|
|
|
if data_key in ['data7', ]:
|
|
|
filtered_videos = filter_video_status_app(h_recall_videos)
|
|
|
else:
|
|
|
filtered_videos = filter_video_status(h_recall_videos)
|
|
|
- # log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
|
|
|
|
|
|
# 屏蔽视频过滤
|
|
|
shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
|
|
|
shield_key_name_list = shield_config.get(region, None)
|
|
|
if shield_key_name_list is not None:
|
|
|
filtered_videos = filter_shield_video(video_ids=filtered_videos, shield_key_name_list=shield_key_name_list)
|
|
|
- # log_.info(f"shield filtered_videos count = {len(filtered_videos)}")
|
|
|
|
|
|
# 涉政视频过滤
|
|
|
political_filter = param.get('political_filter', None)
|
|
|
if political_filter is True:
|
|
|
- # log_.info(f"political filter videos count = {len(filtered_videos)}")
|
|
|
filtered_videos = filter_political_videos(video_ids=filtered_videos)
|
|
|
- # log_.info(f"political filtered videos count = {len(filtered_videos)}")
|
|
|
+ log_.info(f"视频状态-涉政等-过滤后,一共有多少个视频 = {len(filtered_videos)}")
|
|
|
+
|
|
|
|
|
|
- # 写入对应的redis
|
|
|
h_video_ids = []
|
|
|
by_30day_rule_key = param.get('30day_rule_key', None)
|
|
|
if by_30day_rule_key is not None:
|
|
|
# 与相对30天列表去重
|
|
|
h_video_ids = get_day_30day_videos(now_date=now_date, data_key=data_key, rule_key=by_30day_rule_key)
|
|
|
- # log_.info(f"h_video_ids count = {len(h_video_ids)}")
|
|
|
if h_video_ids is not None:
|
|
|
filtered_videos = [video_id for video_id in filtered_videos if int(video_id) not in h_video_ids]
|
|
|
- # log_.info(f"filtered_videos count = {len(filtered_videos)}")
|
|
|
|
|
|
+ # 写入对应的redis
|
|
|
h_recall_result = {}
|
|
|
for video_id in filtered_videos:
|
|
|
score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
|
|
|
- # print(score)
|
|
|
h_recall_result[int(video_id)] = float(score)
|
|
|
h_video_ids.append(int(video_id))
|
|
|
h_recall_key_name = \
|
|
|
f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H}{region}:{data_key}:{rule_key}:" \
|
|
|
f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
|
|
|
+ log_.info("打印地域1小时的某个地域{},redis key:{}".format(region, h_recall_key_name))
|
|
|
if len(h_recall_result) > 0:
|
|
|
- # log_.info(f"h_recall_result count = {len(h_recall_result)}")
|
|
|
+ log_.info(f"开始写入头部数据:count = {len(h_recall_result)}, key = {h_recall_key_name}")
|
|
|
redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=2 * 24 * 3600)
|
|
|
# 限流视频score调整
|
|
|
- update_limit_video_score(initial_videos=h_recall_result, key_name=h_recall_key_name)
|
|
|
+ tmp = update_limit_video_score(initial_videos=h_recall_result, key_name=h_recall_key_name)
|
|
|
+ if tmp:
|
|
|
+ log_.info(f"走了限流逻辑后:count = {len(h_recall_result)}, key = {h_recall_key_name}")
|
|
|
+ else:
|
|
|
+ log_.info("走了限流逻辑,但没更改redis,未生效。")
|
|
|
# 清空线上过滤应用列表
|
|
|
# redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER}{region}.{app_type}.{data_key}.{rule_key}")
|
|
|
+ else:
|
|
|
+ log_.info(f"无数据,不写入。")
|
|
|
|
|
|
- h_rule_key = param.get('h_rule_key', None)
|
|
|
- region_24h_rule_key = param.get('region_24h_rule_key', 'rule1')
|
|
|
- by_24h_rule_key = param.get('24h_rule_key', None)
|
|
|
- by_48h_rule_key = param.get('48h_rule_key', None)
|
|
|
- dup_remove = param.get('dup_remove', True)
|
|
|
- # 与其他召回视频池去重,存入对应的redis
|
|
|
- dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, h_rule_key=h_rule_key,
|
|
|
- region_24h_rule_key=region_24h_rule_key, by_24h_rule_key=by_24h_rule_key,
|
|
|
- by_48h_rule_key=by_48h_rule_key, region=region, data_key=data_key,
|
|
|
- rule_rank_h_flag=rule_rank_h_flag, political_filter=political_filter,
|
|
|
- shield_config=shield_config, dup_remove=dup_remove)
|
|
|
+ # h_rule_key = param.get('h_rule_key', None)
|
|
|
+ # region_24h_rule_key = param.get('region_24h_rule_key', 'rule1')
|
|
|
+ # by_24h_rule_key = param.get('24h_rule_key', None)
|
|
|
+ # by_48h_rule_key = param.get('48h_rule_key', None)
|
|
|
+ # dup_remove = param.get('dup_remove', True)
|
|
|
+ # # 与其他召回视频池去重,存入对应的redis
|
|
|
+ # dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, h_rule_key=h_rule_key,
|
|
|
+ # region_24h_rule_key=region_24h_rule_key, by_24h_rule_key=by_24h_rule_key,
|
|
|
+ # by_48h_rule_key=by_48h_rule_key, region=region, data_key=data_key,
|
|
|
+ # rule_rank_h_flag=rule_rank_h_flag, political_filter=political_filter,
|
|
|
+ # shield_config=shield_config, dup_remove=dup_remove)
|
|
|
|
|
|
|
|
|
def dup_data(h_video_ids, initial_key_name, dup_key_name, region, political_filter, shield_config, dup_remove):
|
|
@@ -836,15 +854,14 @@ def merge_df_with_score(df_left, df_right):
|
|
|
|
|
|
def process_with_region(region, df_merged, data_key, rule_key, rule_param, now_date, now_h,
|
|
|
rule_rank_h_flag, add_videos_with_pre_h, hour_count):
|
|
|
- log_.info(f"region = {region} start...")
|
|
|
- # 计算score
|
|
|
+ log_.info(f"多协程的region = {region} 开始执行")
|
|
|
region_df = df_merged[df_merged['code'] == region]
|
|
|
- log_.info(f'region = {region}, region_df count = {len(region_df)}')
|
|
|
+ log_.info(f'该区域region = {region}, 下有多少数据量 = {len(region_df)}')
|
|
|
score_df = cal_score(df=region_df, param=rule_param)
|
|
|
video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=rule_key, param=rule_param,
|
|
|
region=region, data_key=data_key, rule_rank_h_flag=rule_rank_h_flag,
|
|
|
add_videos_with_pre_h=add_videos_with_pre_h, hour_count=hour_count)
|
|
|
- log_.info(f"region = {region} end!")
|
|
|
+ log_.info(f"多协程的region = {region} 完成执行")
|
|
|
|
|
|
|
|
|
def process_with_region2(region, df_merged, data_key, rule_key, rule_param, now_date, now_h,
|
|
@@ -942,15 +959,13 @@ def copy_data_for_city(region, city_code, data_key, rule_key, now_date, now_h, s
|
|
|
|
|
|
|
|
|
def process_with_param(param, data_params_item, rule_params_item, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag):
|
|
|
- log_.info(f"param = {param} start...")
|
|
|
-
|
|
|
data_key = param.get('data')
|
|
|
data_param = data_params_item.get(data_key)
|
|
|
- log_.info(f"data_key = {data_key}, data_param = {data_param}")
|
|
|
rule_key = param.get('rule')
|
|
|
rule_param = rule_params_item.get(rule_key)
|
|
|
- log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
|
|
|
merge_func = rule_param.get('merge_func', None)
|
|
|
+ log_.info("数据采用:{},统计采用{}.".format(data_key, rule_key))
|
|
|
+ log_.info("具体的规则是:{}.".format(rule_param))
|
|
|
# 是否在地域小时级数据中增加打捞的优质视频
|
|
|
add_videos_with_pre_h = rule_param.get('add_videos_with_pre_h', False)
|
|
|
hour_count = rule_param.get('hour_count', 0)
|
|
@@ -987,18 +1002,17 @@ def process_with_param(param, data_params_item, rule_params_item, region_code_li
|
|
|
|
|
|
# 特殊城市视频数据准备
|
|
|
# 屏蔽视频过滤
|
|
|
- shield_config = rule_param.get('shield_config', config_.SHIELD_CONFIG)
|
|
|
- for region, city_list in config_.REGION_CITY_MAPPING.items():
|
|
|
- t = [
|
|
|
- gevent.spawn(
|
|
|
- copy_data_for_city,
|
|
|
- region, city_code, data_key, rule_key, now_date, now_h, shield_config
|
|
|
- )
|
|
|
- for city_code in city_list
|
|
|
- ]
|
|
|
- gevent.joinall(t)
|
|
|
-
|
|
|
- log_.info(f"param = {param} end!")
|
|
|
+ # shield_config = rule_param.get('shield_config', config_.SHIELD_CONFIG)
|
|
|
+ # for region, city_list in config_.REGION_CITY_MAPPING.items():
|
|
|
+ # t = [
|
|
|
+ # gevent.spawn(
|
|
|
+ # copy_data_for_city,
|
|
|
+ # region, city_code, data_key, rule_key, now_date, now_h, shield_config
|
|
|
+ # )
|
|
|
+ # for city_code in city_list
|
|
|
+ # ]
|
|
|
+ # gevent.joinall(t)
|
|
|
+ log_.info(f"多进程的 param = {param} 完成执行!")
|
|
|
|
|
|
|
|
|
def rank_by_h(project, table, now_date, now_h, rule_params, region_code_list, rule_rank_h_flag):
|
|
@@ -1019,80 +1033,6 @@ def rank_by_h(project, table, now_date, now_h, rule_params, region_code_list, ru
|
|
|
|
|
|
|
|
|
|
|
|
-
|
|
|
- # pool = multiprocessing.Pool(processes=len(config_.APP_TYPE))
|
|
|
- # for app_type, params in rule_params.items():
|
|
|
- # pool.apply_async(func=process_with_app_type,
|
|
|
- # args=(app_type, params, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag))
|
|
|
- # pool.close()
|
|
|
- # pool.join()
|
|
|
-
|
|
|
- """
|
|
|
- for app_type, params in rule_params.items():
|
|
|
- log_.info(f"app_type = {app_type} start...")
|
|
|
- data_params_item = params.get('data_params')
|
|
|
- rule_params_item = params.get('rule_params')
|
|
|
- for param in params.get('params_list'):
|
|
|
- log_.info(f"param = {param} start...")
|
|
|
- data_key = param.get('data')
|
|
|
- data_param = data_params_item.get(data_key)
|
|
|
- log_.info(f"data_key = {data_key}, data_param = {data_param}")
|
|
|
- df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
|
|
|
- df_merged = reduce(merge_df, df_list)
|
|
|
- rule_key = param.get('rule')
|
|
|
- rule_param = rule_params_item.get(rule_key)
|
|
|
- log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
|
|
|
-
|
|
|
- task_list = []
|
|
|
- for region in region_code_list:
|
|
|
- t = Thread(target=process_with_region,
|
|
|
- args=(region, df_merged, app_type, data_key, rule_key, rule_param, now_date, now_h)
|
|
|
- )
|
|
|
- t.start()
|
|
|
- task_list.append(t)
|
|
|
- for t in task_list:
|
|
|
- t.join()
|
|
|
- log_.info(f"param = {param} end!")
|
|
|
- log_.info(f"app_type = {app_type} end!")
|
|
|
- """
|
|
|
-
|
|
|
- # for app_type, params in rule_params.items():
|
|
|
- # log_.info(f"app_type = {app_type}")
|
|
|
- # for data_key, data_param in params['data_params'].items():
|
|
|
- # log_.info(f"data_key = {data_key}, data_param = {data_param}")
|
|
|
- # df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
|
|
|
- # df_merged = reduce(merge_df, df_list)
|
|
|
- # for rule_key, rule_param in params['rule_params'].items():
|
|
|
- # log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
|
|
|
- # task_list = [
|
|
|
- # gevent.spawn(process_with_region, region, df_merged, app_type, data_key, rule_key, rule_param, now_date, now_h)
|
|
|
- # for region in region_code_list
|
|
|
- # ]
|
|
|
- # gevent.joinall(task_list)
|
|
|
-
|
|
|
- # rank
|
|
|
- # for key, value in rule_params.items():
|
|
|
- # log_.info(f"rule = {key}, param = {value}")
|
|
|
- # for region in region_code_list:
|
|
|
- # log_.info(f"region = {region}")
|
|
|
- # # 计算score
|
|
|
- # region_df = feature_df[feature_df['code'] == region]
|
|
|
- # log_.info(f'region_df count = {len(region_df)}')
|
|
|
- # score_df = cal_score(df=region_df, param=value)
|
|
|
- # video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value, region=region)
|
|
|
- # # to-csv
|
|
|
- # score_filename = f"score_{region}_{key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
|
|
|
- # score_df.to_csv(f'./data/{score_filename}')
|
|
|
- # # to-logs
|
|
|
- # log_.info({"date": datetime.datetime.strftime(now_date, '%Y%m%d%H'),
|
|
|
- # "region_code": region,
|
|
|
- # "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H,
|
|
|
- # "rule_key": key,
|
|
|
- # # "score_df": score_df[['videoid', 'score']]
|
|
|
- # }
|
|
|
- # )
|
|
|
-
|
|
|
-
|
|
|
def h_bottom_process(param, rule_params_item, region_code_list, key_prefix, redis_dt, redis_h,
|
|
|
now_date, now_h, rule_rank_h_flag):
|
|
|
redis_helper = RedisHelper()
|
|
@@ -1166,56 +1106,12 @@ def h_rank_bottom(now_date, now_h, rule_params, region_code_list, rule_rank_h_fl
|
|
|
)
|
|
|
pool.close()
|
|
|
pool.join()
|
|
|
- # for param in rule_params.get('params_list'):
|
|
|
- # data_key = param.get('data')
|
|
|
- # rule_key = param.get('rule')
|
|
|
- # rule_param = rule_params_item.get(rule_key)
|
|
|
- # log_.info(f"data_key = {data_key}, rule_key = {rule_key}, rule_param = {rule_param}")
|
|
|
- # region_24h_rule_key = rule_param.get('region_24h_rule_key', 'rule1')
|
|
|
- # by_24h_rule_key = rule_param.get('24h_rule_key', None)
|
|
|
- # by_48h_rule_key = rule_param.get('48h_rule_key', None)
|
|
|
- # # 涉政视频过滤
|
|
|
- # political_filter = param.get('political_filter', None)
|
|
|
- # # 屏蔽视频过滤
|
|
|
- # shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
|
|
|
- # for region in region_code_list:
|
|
|
- # log_.info(f"region = {region}")
|
|
|
- # key_name = f"{key_prefix}{region}:{data_key}:{rule_key}:{redis_dt}:{redis_h}"
|
|
|
- # initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
|
|
|
- # if initial_data is None:
|
|
|
- # initial_data = []
|
|
|
- # final_data = dict()
|
|
|
- # h_video_ids = []
|
|
|
- # for video_id, score in initial_data:
|
|
|
- # final_data[video_id] = score
|
|
|
- # h_video_ids.append(int(video_id))
|
|
|
- # # 存入对应的redis
|
|
|
- # final_key_name = \
|
|
|
- # f"{key_prefix}{region}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
|
|
|
- # if len(final_data) > 0:
|
|
|
- # redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=2 * 24 * 3600)
|
|
|
- # # 与其他召回视频池去重,存入对应的redis
|
|
|
- # dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key,
|
|
|
- # region_24h_rule_key=region_24h_rule_key, region=region,
|
|
|
- # data_key=data_key, by_24h_rule_key=by_24h_rule_key,
|
|
|
- # by_48h_rule_key=by_48h_rule_key, rule_rank_h_flag=rule_rank_h_flag,
|
|
|
- # political_filter=political_filter, shield_config=shield_config)
|
|
|
- # # 特殊城市视频数据准备
|
|
|
- # for region, city_list in config_.REGION_CITY_MAPPING.items():
|
|
|
- # t = [
|
|
|
- # gevent.spawn(
|
|
|
- # copy_data_for_city,
|
|
|
- # region, city_code, data_key, rule_key, now_date, now_h, shield_config
|
|
|
- # )
|
|
|
- # for city_code in city_list
|
|
|
- # ]
|
|
|
- # gevent.joinall(t)
|
|
|
+
|
|
|
|
|
|
|
|
|
def h_timer_check():
|
|
|
try:
|
|
|
rule_rank_h_flag = sys.argv[1]
|
|
|
- # rule_rank_h_flag = '24h'
|
|
|
if rule_rank_h_flag == '48h':
|
|
|
rule_params = config_.RULE_PARAMS_REGION_APP_TYPE_48H
|
|
|
else:
|
|
@@ -1224,27 +1120,28 @@ def h_timer_check():
|
|
|
table = config_.TABLE_REGION_APP_TYPE
|
|
|
region_code_list = [code for region, code in region_code.items()]
|
|
|
now_date = datetime.datetime.today()
|
|
|
- log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}, rule_rank_h_flag: {rule_rank_h_flag}")
|
|
|
+ log_.info(f"开始执行: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
|
|
|
now_h = datetime.datetime.now().hour
|
|
|
now_min = datetime.datetime.now().minute
|
|
|
if now_h == 0:
|
|
|
+ log_.info("当前时间{}小时,使用bottom的data,开始。".format(now_h))
|
|
|
h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list,
|
|
|
rule_rank_h_flag=rule_rank_h_flag)
|
|
|
- log_.info(f"region_h_data end!")
|
|
|
+ log_.info("----------当前时间{}小时,使用bottom的data,完成----------".format(now_h))
|
|
|
return
|
|
|
# 查看当前小时更新的数据是否已准备好
|
|
|
h_data_count = h_data_check(project=project, table=table, now_date=now_date)
|
|
|
if h_data_count > 0:
|
|
|
- log_.info(f'region_h_data_count = {h_data_count}')
|
|
|
+ log_.info('上游数据表查询数据条数 h_data_count = {},开始计算。'.format(h_data_count))
|
|
|
# 数据准备好,进行更新
|
|
|
rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params,
|
|
|
project=project, table=table, region_code_list=region_code_list, rule_rank_h_flag=rule_rank_h_flag)
|
|
|
- log_.info(f"region_h_data end!")
|
|
|
+ log_.info("----------正常完成----------")
|
|
|
elif now_min > 40:
|
|
|
- log_.info('h_recall data is None, use bottom data!')
|
|
|
+ log_.info('当前分钟超过40,预计执行无法完成,使用 bottom data!')
|
|
|
h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list,
|
|
|
rule_rank_h_flag=rule_rank_h_flag)
|
|
|
- log_.info(f"region_h_data end!")
|
|
|
+ log_.info('----------当前分钟超过40,使用bottom的data,完成----------')
|
|
|
else:
|
|
|
# 数据没准备好,1分钟后重新检查
|
|
|
Timer(60, h_timer_check).start()
|
|
@@ -1268,5 +1165,5 @@ def h_timer_check():
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
- log_.info(f"region_h_data start...")
|
|
|
+ log_.info("文件alg_recsys_recall_1h_region.py:「1小时地域」 开始执行")
|
|
|
h_timer_check()
|