소스 검색

523实验 地域1小时 更新公式

zhangbo 1 년 전
부모
커밋
e04d946c4d
2개의 변경된 파일76개의 추가작업 그리고 34개의 파일을 삭제
  1. 4 2
      config.py
  2. 72 32
      region_rule_rank_h_v2.py

+ 4 - 2
config.py

@@ -420,7 +420,9 @@ class BaseConfig(object):
                        'score_func': 'back_rate_rank_weighting'},
             'rule66': {
                 # 'view_type': 'video-show-region', 'platform_return_rate': 0.001,
-                'view_type': 'video-show-region', "return_countv2": 1, 'platform_return_ratev2': 0.001,
+                # 'view_type': 'video-show-region', "return_countv2": 1, 'platform_return_ratev2': 0.001,
+                'view_type': 'video-show-region',
+                'score_func': '20240223',
                 'region_24h_rule_key': 'rule66', '24h_rule_key': 'rule66'
             },
             'rule68': {
@@ -2723,7 +2725,7 @@ def set_config():
     # 获取环境变量 ROV_OFFLINE_ENV
     env = os.environ.get('ROV_OFFLINE_ENV')
     # print("ROV_OFFLINE_ENV:{}".format(str(env)))
-    env = 'dev'
+    # env = 'dev'
     if env is None:
         # log_.error('ENV ERROR: is None!')
         return

+ 72 - 32
region_rule_rank_h_v2.py

@@ -59,6 +59,9 @@ features = [
     'lastthreehour_return_now_new',  # h-3分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
     'lastthreehour_return_new',  # h-3分享,h-3回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
     'platform_return_new',  # 平台分发回流(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+
+    'lastonehour_allreturn',
+    'lastonehour_allreturn_sharecnt'
 ]
 
 
@@ -85,9 +88,12 @@ def h_data_check(project, table, now_date):
 
     try:
         dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
+        # 测试 张博
         check_res = check_table_partition_exits(date=dt, project=project, table=table)
         if check_res:
-            sql = f'select * from {project}.{table} where dt = {dt}'
+            sql = f'select * from {project}.{table} where dt = "{dt}"'
+            print("zhangbo-sql-是否有数据")
+            print(sql)
             with odps.execute_sql(sql=sql).open_reader() as reader:
                 data_count = reader.count
         else:
@@ -127,7 +133,7 @@ def get_day_30day_videos(now_date, data_key, rule_key):
 def get_feature_data(project, table, now_date):
     """获取特征数据"""
     dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
-    # dt = '2022041310'
+    # 张博 测试
     records = get_data_from_odps(date=dt, project=project, table=table)
     feature_data = []
     for record in records:
@@ -139,6 +145,37 @@ def get_feature_data(project, table, now_date):
     return feature_df
 
 
+def cal_score_initial_20240223(df, param):
+    """
+    计算score
+    :param df: 特征数据
+    :param param: 规则参数
+    :return:
+    """
+    log_.info("进入了cal_score_initial_20240223")
+    df = df.fillna(0)
+    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
+    df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
+    df['back_rate_new'] = (df['lastonehour_return'] + 1) / (df['lastonehour_share'] + 10)
+    df['back_rate_all'] = df['lastonehour_allreturn'] / (df['lastonehour_allreturn_sharecnt'] + 10)
+    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
+    df['log_back_all'] = (df['lastonehour_allreturn'] + 1).apply(math.log)
+    if param.get('view_type', None) == 'video-show':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
+    elif param.get('view_type', None) == 'video-show-region':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
+    else:
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
+    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
+    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
+    df['score'] = df['share_rate'] * (
+        df['back_rate_new'] + 0.01 * df['back_rate_all']
+    ) * (
+            df['log_back'] + 0.01 * df['log_back_all']
+    ) * df['K2']
+    df = df.sort_values(by=['score'], ascending=False)
+    return df
+
 def cal_score_initial(df, param):
     """
     计算score
@@ -510,6 +547,8 @@ def cal_score(df, param):
             df = cal_score_with_back_rate_exponential_weighting2(df=df, param=param)
         elif param.get('score_func', None) == 'back_rate_rank_weighting':
             df = cal_score_with_back_rate_by_rank_weighting(df=df, param=param)
+        elif param.get('score_func', None) == '20240223':
+            df = cal_score_initial_20240223(df=df, param=param)
         else:
             df = cal_score_initial(df=df, param=param)
     return df
@@ -601,57 +640,58 @@ def video_rank(df, now_date, now_h, rule_key, param, region, data_key, rule_rank
     return_count = param.get('return_count', 1)
     score_value = param.get('score_rule', 0)
     platform_return_rate = param.get('platform_return_rate', 0)
+    # h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value)
+    #                  & (df['platform_return_rate'] >= platform_return_rate)]
+    # h_recall_df = df[
+    #     (df['lastonehour_return'] >= return_count) &
+    #     (df['score'] >= score_value) &
+    #     (df['platform_return_rate'] >= platform_return_rate)
+    #     ]
     h_recall_df = df[
-                        (df['lastonehour_return'] >= return_count) &
-                        (df['score'] >= score_value) &
-                        (df['platform_return_rate'] >= platform_return_rate)
-                     ]
-    try:
-        if "return_countv2" in param.keys() and "platform_return_ratev2" in param.keys():
-            return_countv2 = param["return_countv2"]
-            platform_return_ratev2 = param["platform_return_ratev2"]
-            h_recall_df = h_recall_df[
-                df['platform_return_rate'] >= platform_return_ratev2 |
-                (df['platform_return_rate'] < platform_return_ratev2 & df['lastonehour_return'] > return_countv2)
-            ]
-    except Exception as e:
-        log_.error("return_countv2 is wrong with{}".format(e))
-
+        (df['lastonehour_allreturn'] > 0)
+        ]
+    # try:
+    #     if "return_countv2" in param.keys() and "platform_return_ratev2" in param.keys():
+    #         return_countv2 = param["return_countv2"]
+    #         platform_return_ratev2 = param["platform_return_ratev2"]
+    #         h_recall_df = h_recall_df[
+    #             df['platform_return_rate'] >= platform_return_ratev2 |
+    #             (df['platform_return_rate'] < platform_return_ratev2 & df['lastonehour_return'] > return_countv2)
+    #             ]
+    # except Exception as e:
+    #     log_.error("return_countv2 is wrong with{}".format(e))
 
     # videoid重复时,保留分值高
     h_recall_df = h_recall_df.sort_values(by=['score'], ascending=False)
     h_recall_df = h_recall_df.drop_duplicates(subset=['videoid'], keep='first')
     h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
 
+    log_.info(f"各种规则过滤后,一共有多少个视频 = {len(h_recall_df)}")
     # 增加打捞的优质视频
     if add_videos_with_pre_h is True:
         add_func = param.get('add_func', None)
         h_recall_df = add_videos(initial_df=h_recall_df, now_date=now_date, rule_key=rule_key,
                                  region=region, data_key=data_key, hour_count=hour_count, top=10, add_func=add_func)
-
+        log_.info(f"打捞优质视频完成")
     h_recall_videos = h_recall_df['videoid'].to_list()
-    # log_.info(f'h_recall videos count = {len(h_recall_videos)}')
-
+    log_.info(f"各种规则增加后,一共有多少个视频 = {len(h_recall_videos)}")
     # 视频状态过滤
     if data_key in ['data7', ]:
         filtered_videos = filter_video_status_app(h_recall_videos)
     else:
         filtered_videos = filter_video_status(h_recall_videos)
-    # log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
 
     # 屏蔽视频过滤
     shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
     shield_key_name_list = shield_config.get(region, None)
     if shield_key_name_list is not None:
         filtered_videos = filter_shield_video(video_ids=filtered_videos, shield_key_name_list=shield_key_name_list)
-        # log_.info(f"shield filtered_videos count = {len(filtered_videos)}")
 
     # 涉政视频过滤
     political_filter = param.get('political_filter', None)
     if political_filter is True:
-        # log_.info(f"political filter videos count = {len(filtered_videos)}")
         filtered_videos = filter_political_videos(video_ids=filtered_videos)
-        # log_.info(f"political filtered videos count = {len(filtered_videos)}")
+    log_.info(f"视频状态-涉政等-过滤后,一共有多少个视频 = {len(filtered_videos)}")
 
     # 写入对应的redis
     h_video_ids = []
@@ -673,8 +713,9 @@ def video_rank(df, now_date, now_h, rule_key, param, region, data_key, rule_rank
     h_recall_key_name = \
         f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H}{region}:{data_key}:{rule_key}:" \
         f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+    log_.info("打印地域1小时的某个地域{},redis key:{}".format(region, h_recall_key_name))
     if len(h_recall_result) > 0:
-        # log_.info(f"h_recall_result count = {len(h_recall_result)}")
+        log_.info(f"开始写入头部数据:count = {len(h_recall_result)}, key = {h_recall_key_name}")
         redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=2 * 24 * 3600)
         # 限流视频score调整
         update_limit_video_score(initial_videos=h_recall_result, key_name=h_recall_key_name)
@@ -717,8 +758,7 @@ def merge_df_with_score(df_left, df_right):
 
 def process_with_region(region, df_merged, data_key, rule_key, rule_param, now_date, now_h,
                         rule_rank_h_flag, add_videos_with_pre_h, hour_count):
-    log_.info(f"region = {region} start...")
-    # 计算score
+    log_.info(f"多协程的region = {region} 开始执行")
     region_df = df_merged[df_merged['code'] == region]
     log_.info(f'该区域region = {region}, 下有多少数据量 = {len(region_df)}')
     score_df = cal_score(df=region_df, param=rule_param)
@@ -805,10 +845,8 @@ def process_with_param(param, data_params_item, rule_params_item, region_code_li
 
     data_key = param.get('data')
     data_param = data_params_item.get(data_key)
-    log_.info(f"data_key = {data_key}, data_param = {data_param}")
     rule_key = param.get('rule')
     rule_param = rule_params_item.get(rule_key)
-    log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
     merge_func = rule_param.get('merge_func', None)
     log_.info("数据采用:{},统计采用{}.".format(data_key, rule_key))
     log_.info("具体的规则是:{}.".format(rule_param))
@@ -1079,11 +1117,12 @@ def h_timer_check():
         table = config_.TABLE_REGION_APP_TYPE
         region_code_list = [code for region, code in region_code.items()]
         now_date = datetime.datetime.today()
-        log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}, rule_rank_h_flag: {rule_rank_h_flag}")
+        log_.info(f"开始执行: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
         now_h = datetime.datetime.now().hour
         now_min = datetime.datetime.now().minute
         redis_helper = RedisHelper()
         if now_h == 0:
+            log_.info("当前时间{}小时,使用bottom的data,开始。".format(now_h))
             h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list,
                           rule_rank_h_flag=rule_rank_h_flag)
             log_.info(f"region_h_data end!")
@@ -1096,7 +1135,7 @@ def h_timer_check():
         # 查看当前小时更新的数据是否已准备好
         h_data_count = h_data_check(project=project, table=table, now_date=now_date)
         if h_data_count > 0:
-            log_.info(f'region_h_data_count = {h_data_count}')
+            log_.info('上游数据表查询数据条数 h_data_count = {},开始计算。'.format(h_data_count))
             # 数据准备好,进行更新
             rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params,
                       project=project, table=table, region_code_list=region_code_list, rule_rank_h_flag=rule_rank_h_flag)
@@ -1118,6 +1157,7 @@ def h_timer_check():
             log_.info(f"region_h_data status update to '1' finished!")
         else:
             # 数据没准备好,1分钟后重新检查
+            log_.info("上游数据未就绪,等待...")
             Timer(60, h_timer_check).start()
 
     except Exception as e:
@@ -1132,5 +1172,5 @@ def h_timer_check():
 
 
 if __name__ == '__main__':
-    log_.info(f"region_h_data start...")
+    log_.info(f"region-rule-rank-h-v2 start...")
     h_timer_check()