Переглянути джерело

Merge branch 'feature/zhangbo_flow_recall' of algorithm/rov-offline into master

zhangbo 1 рік тому
батько
коміт
bbb01cff1c

+ 314 - 0
alg_recsys_recall02_1h_region.py

@@ -0,0 +1,314 @@
+# -*- coding: utf-8 -*-
+import multiprocessing
+import traceback
+import gevent
+import datetime
+import pandas as pd
+import math
+from functools import reduce
+from odps import ODPS
+from threading import Timer
+from utils import MysqlHelper, RedisHelper, get_data_from_odps, filter_video_status, filter_shield_video, \
+    check_table_partition_exits, filter_video_status_app, send_msg_to_feishu, filter_political_videos
+from config import set_config
+from log import Log
+from check_video_limit_distribute import update_limit_video_score
+
+config_, _ = set_config()
+log_ = Log()
+
+region_code = config_.REGION_CODE
+
+
+RULE_PARAMS = {
+    'rule_params': {
+        'rule66': {
+            'view_type': 'video-show-region', 'platform_return_rate': 0.001,
+            'region_24h_rule_key': 'rule66', '24h_rule_key': 'rule66'
+        },
+        'rule67': {
+          'view_type': 'video-show-region', 'platform_return_rate': 0.001,
+        'region_24h_rule_key': 'rule66', '24h_rule_key': 'rule66', 'h_rule_key': 'rule66'
+         },
+         'rule68': {
+             'view_type': 'video-show-region', 'platform_return_rate': 0.001,
+             'region_24h_rule_key': 'rule66', '24h_rule_key': 'rule66',
+             'score_func': 'back_rate_exponential_weighting1'
+         },
+
+    },
+    'data_params': config_.DATA_PARAMS,
+    'params_list': [
+        # 532
+        # {'data': 'data66', 'rule': 'rule66'},  # 523-> 523 & 518
+        # {'data': 'data66', 'rule': 'rule67'},  # 523->510
+        # {'data': 'data66', 'rule': 'rule68'},  # 523->514
+        # {'data': 'data66', 'rule': 'rule69'},  # 523->518
+    ],
+}
+
+features = [
+    'apptype',
+    'code',
+    'videoid',
+    'lastonehour_preview',  # 过去1小时预曝光人数 - 区分地域
+    'lastonehour_view',  # 过去1小时曝光人数 - 区分地域
+    'lastonehour_play',  # 过去1小时播放人数 - 区分地域
+    'lastonehour_share',  # 过去1小时分享人数 - 区分地域
+    'lastonehour_return',  # 过去1小时分享,过去1小时回流人数 - 区分地域
+    'lastonehour_preview_total',  # 过去1小时预曝光次数 - 区分地域
+    'lastonehour_view_total',  # 过去1小时曝光次数 - 区分地域
+    'lastonehour_play_total',  # 过去1小时播放次数 - 区分地域
+    'lastonehour_share_total',  # 过去1小时分享次数 - 区分地域
+    'platform_return',
+    'lastonehour_show',  # 不区分地域
+    'lastonehour_show_region',  # 地域分组
+    'lasttwohour_share',  # h-2小时分享人数
+    'lasttwohour_return_now',  # h-2分享,过去1小时回流人数
+    'lasttwohour_return',  # h-2分享,h-2回流人数
+    'lastthreehour_share',  # h-3小时分享人数
+    'lastthreehour_return_now',  # h-3分享,过去1小时回流人数
+    'lastthreehour_return',  # h-3分享,h-3回流人数
+
+    'lastonehour_return_new',  # 过去1小时分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'lasttwohour_return_now_new',  # h-2分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'lasttwohour_return_new',  # h-2分享,h-2回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'lastthreehour_return_now_new',  # h-3分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'lastthreehour_return_new',  # h-3分享,h-3回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'platform_return_new',  # 平台分发回流(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+]
+
+
+
+def merge_df(df_left, df_right):
+    """
+    df按照videoid, code 合并,对应特征求和
+    :param df_left:
+    :param df_right:
+    :return:
+    """
+    df_merged = pd.merge(df_left, df_right, on=['videoid', 'code'], how='outer', suffixes=['_x', '_y'])
+    df_merged.fillna(0, inplace=True)
+    feature_list = ['videoid', 'code']
+    for feature in features:
+        if feature in ['apptype', 'videoid', 'code']:
+            continue
+        df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
+        feature_list.append(feature)
+    return df_merged[feature_list]
+
+def video_rank(df, now_date, now_h, rule_key, param, region, data_key):
+    """
+    获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
+    :param df:
+    :param now_date:
+    :param now_h:
+    :param rule_key: 小时级数据进入条件
+    :param param: 小时级数据进入条件参数
+    :param region: 所属地域
+    :return:
+    """
+    redis_helper = RedisHelper()
+
+    # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005
+    return_count = param.get('return_count', 1)
+    score_value = param.get('score_rule', 0)
+    platform_return_rate = param.get('platform_return_rate', 0)
+    h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value)
+                     & (df['platform_return_rate'] >= platform_return_rate)]
+
+    # videoid重复时,保留分值高
+    h_recall_df = h_recall_df.sort_values(by=['score'], ascending=False)
+    h_recall_df = h_recall_df.drop_duplicates(subset=['videoid'], keep='first')
+    h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
+
+    log_.info(f"各种规则过滤后,一共有多少个视频 = {len(h_recall_df)}")
+
+    h_recall_videos = h_recall_df['videoid'].to_list()
+    log_.info(f"各种规则增加后,一共有多少个视频 = {len(h_recall_videos)}")
+    # 视频状态过滤
+    filtered_videos = filter_video_status(h_recall_videos)
+
+    # 屏蔽视频过滤
+    shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
+    shield_key_name_list = shield_config.get(region, None)
+    if shield_key_name_list is not None:
+        filtered_videos = filter_shield_video(video_ids=filtered_videos, shield_key_name_list=shield_key_name_list)
+
+    # 涉政视频过滤
+    political_filter = param.get('political_filter', None)
+    if political_filter is True:
+        filtered_videos = filter_political_videos(video_ids=filtered_videos)
+    log_.info(f"视频状态-涉政等-过滤后,一共有多少个视频 = {len(filtered_videos)}")
+
+
+    h_video_ids = []
+    # 写入对应的redis
+    h_recall_result = {}
+    for video_id in filtered_videos:
+        score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
+        h_recall_result[int(video_id)] = float(score)
+        h_video_ids.append(int(video_id))
+    h_recall_key_name = \
+        f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H}{region}:{data_key}:{rule_key}:" \
+        f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+    log_.info("打印地域1小时的某个地域{},redis key:{}".format(region, h_recall_key_name))
+    if len(h_recall_result) > 0:
+        log_.info(f"开始写入头部数据:count = {len(h_recall_result)}, key = {h_recall_key_name}")
+        redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=2 * 24 * 3600)
+        # 限流视频score调整
+        tmp = update_limit_video_score(initial_videos=h_recall_result, key_name=h_recall_key_name)
+        if tmp:
+            log_.info(f"走了限流逻辑后:count = {len(h_recall_result)}, key = {h_recall_key_name}")
+        else:
+            log_.info("走了限流逻辑,但没更改redis,未生效。")
+        # 清空线上过滤应用列表
+        # redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER}{region}.{app_type}.{data_key}.{rule_key}")
+    else:
+        log_.info(f"无数据,不写入。")
+def cal_score_initial(df, param):
+    """
+    计算score
+    :param df: 特征数据
+    :param param: 规则参数
+    :return:
+    """
+    # score计算公式: sharerate*backrate*logback*ctr
+    # sharerate = lastonehour_share/(lastonehour_play+1000)
+    # backrate = lastonehour_return/(lastonehour_share+10)
+    # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
+    # score = sharerate * backrate * LOG(lastonehour_return+1) * K2
+
+    df = df.fillna(0)
+    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
+    df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
+    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
+    if param.get('view_type', None) == 'video-show':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
+    elif param.get('view_type', None) == 'video-show-region':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
+    else:
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
+    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
+
+    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
+
+    df['score1'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
+
+    click_score_rate = param.get('click_score_rate', None)
+    back_score_rate = param.get('click_score_rate', None)
+    if click_score_rate is not None:
+        df['score'] = (1 - click_score_rate) * df['score1'] + click_score_rate * df['K2']
+    elif back_score_rate is not None:
+        df['score'] = (1 - back_score_rate) * df['score1'] + back_score_rate * df['back_rate']
+    else:
+        df['score'] = df['score1']
+
+    df = df.sort_values(by=['score'], ascending=False)
+    return df
+def cal_score(df, param):
+    df = cal_score_initial(df=df, param=param)
+    return df
+
+def process_with_region(region, df_merged, data_key, rule_key, rule_param, now_date, now_h):
+    log_.info(f"多协程的region = {region} 开始执行")
+    region_df = df_merged[df_merged['code'] == region]
+    log_.info(f'该区域region = {region}, 下有多少数据量 = {len(region_df)}')
+    score_df = cal_score(df=region_df, param=rule_param)
+    video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=rule_key, param=rule_param,
+               region=region, data_key=data_key)
+    log_.info(f"多协程的region = {region} 完成执行")
+
+def process_with_param(param, data_params_item, rule_params_item, region_code_list,
+                       feature_df,
+                       now_date, now_h):
+    data_key = param.get('data')
+    data_param = data_params_item.get(data_key)
+    rule_key = param.get('rule')
+    rule_param = rule_params_item.get(rule_key)
+    log_.info("数据采用:{},统计采用{}.".format(data_key, rule_key))
+    log_.info("具体的规则是:{}.".format(rule_param))
+
+    df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
+    df_merged = reduce(merge_df, df_list)
+    task_list = [
+        gevent.spawn(process_with_region,
+                     region, df_merged, data_key, rule_key, rule_param, now_date, now_h)
+        for region in region_code_list
+    ]
+    gevent.joinall(task_list)
+    log_.info(f"多进程的 param = {param} 完成执行!")
+
+def get_feature_data(project, table, time_dt_h):
+    records = get_data_from_odps(date=time_dt_h, project=project, table=table)
+    feature_data = []
+    for record in records:
+        item = {}
+        for feature_name in features:
+            item[feature_name] = record[feature_name]
+        feature_data.append(item)
+    feature_df = pd.DataFrame(feature_data)
+    return feature_df
+
+def rank_by_h(project, table, time_dt_h, time_hour, rule_params, region_code_list):
+    feature_df = get_feature_data(project=project, table=table, time_dt_h=time_dt_h)
+    feature_df['apptype'] = feature_df['apptype'].astype(int)
+    data_params_item = rule_params.get('data_params')
+    rule_params_item = rule_params.get('rule_params')
+    params_list = rule_params.get('params_list')
+    pool = multiprocessing.Pool(processes=len(params_list))
+    for param in params_list:
+        pool.apply_async(
+            func=process_with_param,
+            args=(param, data_params_item, rule_params_item, region_code_list, feature_df, time_dt_h, time_hour)
+        )
+    pool.close()
+    pool.join()
+
+def h_timer_check():
+    try:
+        # 1 配置参数读取
+        rule_params = RULE_PARAMS
+        project = config_.PROJECT_REGION_APP_TYPE
+        table = config_.TABLE_REGION_APP_TYPE
+        region_code_list = [code for region, code in region_code.items()]
+
+        # 2 开始执行-时间统计
+        time_now = datetime.datetime.today()
+        time_dt = datetime.datetime.strftime(time_now, '%Y%m%d')
+        time_dt_h = datetime.datetime.strftime(time_now, '%Y%m%d%H')
+        time_hour = datetime.datetime.now().hour
+        time_minute = datetime.datetime.now().minute
+        log_.info(f"开始执行: {time_dt_h}")
+
+        # 查看当前小时更新的数据是否已准备好
+        h_data_count = h_data_check(project=project, table=table, now_date=time_now)
+        if h_data_count > 0:
+            log_.info('上游数据表查询数据条数 h_data_count = {}, 开始进行更新。'.format(h_data_count))
+            # 数据准备好,进行更新
+            rank_by_h(time_dt_h=time_dt_h, time_hour=time_hour, rule_params=rule_params,
+                      project=project, table=table, region_code_list=region_code_list)
+            log_.info("数据1----------正常完成----------")
+        elif time_minute > 40:
+            log_.info('当前分钟超过40,预计执行无法完成,使用 bottom data!')
+            h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list,
+                          rule_rank_h_flag=rule_rank_h_flag)
+            log_.info('----------当前分钟超过40,使用bottom的data,完成----------')
+        else:
+            # 数据没准备好,1分钟后重新检查
+            log_.info("上游数据未就绪,等待...")
+            Timer(60, h_timer_check).start()
+    except Exception as e:
+        log_.error(f"地域分组小时级数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
+        send_msg_to_feishu(
+            webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
+            key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
+            msg_text=f"rov-offline{config_.ENV_TEXT} - 地域分组小时级数据更新失败\n"
+                     f"exception: {e}\n"
+                     f"traceback: {traceback.format_exc()}"
+        )
+
+
+if __name__ == '__main__':
+    log_.info("文件01_1h_region.py:「1小时地域」 开始执行")
+    h_timer_check()

+ 313 - 0
alg_recsys_recall_1h_noregion.py

@@ -0,0 +1,313 @@
+import pandas as pd
+import math
+import traceback
+from functools import reduce
+from odps import ODPS
+from threading import Timer
+from datetime import datetime, timedelta
+from get_data import get_data_from_odps
+from db_helper import RedisHelper
+from utils import filter_video_status, check_table_partition_exits, filter_video_status_app, send_msg_to_feishu
+from config import set_config
+from log import Log
+
+config_, _ = set_config()
+log_ = Log()
+
+RULE_PARAMS = {
+    'rule_params': {
+        'rule66': {'view_type': 'video-show', 'platform_return_rate': 0.001},
+    },
+    'data_params': config_.DATA_PARAMS,
+    'params_list': [
+        {'data': 'data66', 'rule': 'rule66'},
+    ],
+}
+
+features = [
+    'apptype',
+    'videoid',
+    'lastonehour_preview',  # 过去1小时预曝光人数 - 区分地域
+    'lastonehour_view',  # 过去1小时曝光人数 - 区分地域
+    'lastonehour_play',  # 过去1小时播放人数 - 区分地域
+    'lastonehour_share',  # 过去1小时分享人数 - 区分地域
+    'lastonehour_return',  # 过去1小时分享,过去1小时回流人数 - 区分地域
+    'lastonehour_preview_total',  # 过去1小时预曝光次数 - 区分地域
+    'lastonehour_view_total',  # 过去1小时曝光次数 - 区分地域
+    'lastonehour_play_total',  # 过去1小时播放次数 - 区分地域
+    'lastonehour_share_total',  # 过去1小时分享次数 - 区分地域
+    'platform_return',
+    'lastonehour_show',  # 不区分地域
+    'lasttwohour_share',  # h-2小时分享人数
+    'lasttwohour_return_now',  # h-2分享,过去1小时回流人数
+    'lasttwohour_return',  # h-2分享,h-2回流人数
+    'lastthreehour_share',  # h-3小时分享人数
+    'lastthreehour_return_now',  # h-3分享,过去1小时回流人数
+    'lastthreehour_return',  # h-3分享,h-3回流人数
+
+    'lastonehour_return_new',  # 过去1小时分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'lasttwohour_return_now_new',  # h-2分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'lasttwohour_return_new',  # h-2分享,h-2回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'lastthreehour_return_now_new',  # h-3分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'lastthreehour_return_new',  # h-3分享,h-3回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'platform_return_new',  # 平台分发回流(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+]
+
+
+def h_data_check(project, table, now_date):
+    """检查数据是否准备好"""
+    odps = ODPS(
+        access_id=config_.ODPS_CONFIG['ACCESSID'],
+        secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
+        project=project,
+        endpoint=config_.ODPS_CONFIG['ENDPOINT'],
+        connect_timeout=3000,
+        read_timeout=500000,
+        pool_maxsize=1000,
+        pool_connections=1000
+    )
+
+    try:
+        dt = datetime.strftime(now_date, '%Y%m%d%H')
+        check_res = check_table_partition_exits(date=dt, project=project, table=table)
+        if check_res:
+            sql = f'select * from {project}.{table} where dt = {dt}'
+            with odps.execute_sql(sql=sql).open_reader() as reader:
+                data_count = reader.count
+        else:
+            data_count = 0
+    except Exception as e:
+        data_count = 0
+    return data_count
+
+
+def h_rank_bottom(now_date, now_h, rule_params):
+    """未按时更新数据,用上一小时结果作为当前小时的数据"""
+    redis_helper = RedisHelper()
+    if now_h == 0:
+        redis_dt = datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')
+        redis_h = 23
+    else:
+        redis_dt = datetime.strftime(now_date, '%Y%m%d')
+        redis_h = now_h - 1
+    key_prefix = config_.RECALL_KEY_NAME_PREFIX_BY_H_H
+
+    for param in rule_params.get('params_list'):
+        data_key = param.get('data')
+        rule_key = param.get('rule')
+        log_.info(f"data_key = {data_key}, rule_key = {rule_key}")
+        key_name = f"{key_prefix}{data_key}:{rule_key}:{redis_dt}:{redis_h}"
+        initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
+        if initial_data is None:
+            initial_data = []
+        final_data = dict()
+        for video_id, score in initial_data:
+            final_data[video_id] = score
+        # 存入对应的redis
+        final_key_name = \
+            f"{key_prefix}{data_key}:{rule_key}:{datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+        if len(final_data) > 0:
+            redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=2 * 3600)
+
+
+def get_feature_data(project, table, now_date):
+    """获取特征数据"""
+    dt = datetime.strftime(now_date, '%Y%m%d%H')
+    records = get_data_from_odps(date=dt, project=project, table=table)
+    feature_data = []
+    for record in records:
+        item = {}
+        for feature_name in features:
+            item[feature_name] = record[feature_name]
+        feature_data.append(item)
+    feature_df = pd.DataFrame(feature_data)
+    return feature_df
+
+
+def cal_score(df, param):
+    # score = sharerate * backrate * LOG(lastonehour_return + 1) * K2
+    # sharerate = lastonehour_share / (lastonehour_play + 1000)
+    # backrate = lastonehour_return / (lastonehour_share + 10)
+    # ctr = lastonehour_play / (lastonehour_show + 1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
+
+    df = df.fillna(0)
+    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
+    df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
+    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
+    if param.get('view_type', None) == 'video-show':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
+    else:
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
+    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
+
+    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
+
+    df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
+
+    df = df.sort_values(by=['score'], ascending=False)
+    return df
+
+
+def merge_df(df_left, df_right):
+    """
+    df按照videoid 合并,对应特征求和
+    :param df_left:
+    :param df_right:
+    :return:
+    """
+    df_merged = pd.merge(df_left, df_right, on=['videoid'], how='outer', suffixes=['_x', '_y'])
+    df_merged.fillna(0, inplace=True)
+    feature_list = ['videoid']
+    for feature in features:
+        if feature in ['apptype', 'videoid']:
+            continue
+        df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
+        feature_list.append(feature)
+    return df_merged[feature_list]
+
+
+def merge_df_with_score(df_left, df_right):
+    """
+    df 按照videoid合并,平台回流人数、回流人数、分数 分别求和
+    :param df_left:
+    :param df_right:
+    :return:
+    """
+    df_merged = pd.merge(df_left, df_right, on=['videoid'], how='outer', suffixes=['_x', '_y'])
+    df_merged.fillna(0, inplace=True)
+    feature_list = ['videoid', 'lastonehour_return', 'platform_return', 'score']
+    for feature in feature_list[1:]:
+        df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
+    return df_merged[feature_list]
+
+
+def video_rank_h(df, now_date, now_h, rule_key, param, data_key):
+    """
+    获取符合进入召回源条件的视频
+    """
+    redis_helper = RedisHelper()
+    log_.info(f"一共有多少个视频 = {len(df)}")
+
+    # videoid重复时,保留分值高
+    df = df.sort_values(by=['score'], ascending=False)
+    df = df.drop_duplicates(subset=['videoid'], keep='first')
+    df['videoid'] = df['videoid'].astype(int)
+
+    # 获取符合进入召回源条件的视频
+    platform_return_rate = param.get('platform_return_rate', 0)
+    h_recall_df = df[df['platform_return_rate'] > platform_return_rate]
+    h_recall_videos = h_recall_df['videoid'].to_list()
+    log_.info(f"回流率-过滤后,一共有多少个视频 = {len(h_recall_videos)}")
+
+    # 视频状态过滤
+    if data_key in ['data7', ]:
+        filtered_videos = filter_video_status_app(h_recall_videos)
+    else:
+        filtered_videos = filter_video_status(h_recall_videos)
+    log_.info(f"视频状态-过滤后,一共有多少个视频 = {len(filtered_videos)}")
+
+    # 写入对应的redis
+    now_dt = datetime.strftime(now_date, '%Y%m%d')
+    h_video_ids = []
+    h_recall_result = {}
+    for video_id in filtered_videos:
+        score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
+        h_recall_result[int(video_id)] = float(score)
+        h_video_ids.append(int(video_id))
+
+    # recall:item:score:h:
+    h_recall_key_name = \
+        f"{config_.RECALL_KEY_NAME_PREFIX_BY_H_H}{data_key}:{rule_key}:{now_dt}:{now_h}"
+    log_.info("打印非地域24小时redis key:{}".format(h_recall_key_name))
+    if len(h_recall_result) > 0:
+        log_.info(f"开始写入头部数据:count = {len(h_recall_result)}, key = {h_recall_key_name}")
+        redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=2 * 3600)
+    else:
+        log_.info(f"无数据,不写入。")
+
+def rank_by_h(now_date, now_h, rule_params, project, table):
+    # 获取特征数据
+    feature_df = get_feature_data(now_date=now_date, project=project, table=table)
+    feature_df['apptype'] = feature_df['apptype'].astype(int)
+    # rank
+    data_params_item = rule_params.get('data_params')
+    rule_params_item = rule_params.get('rule_params')
+
+    for param in rule_params.get('params_list'):
+        score_df_list = []
+        data_key = param.get('data')
+        data_param = data_params_item.get(data_key)
+        log_.info(f"data_key = {data_key}, data_param = {data_param}")
+        rule_key = param.get('rule')
+        rule_param = rule_params_item.get(rule_key)
+        log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
+        merge_func = rule_param.get('merge_func', 1)
+        log_.info("数据采用:{},统计采用{}.".format(data_key, rule_key))
+        log_.info("具体的规则是:{}.".format(rule_param))
+
+        if merge_func == 2:
+            for apptype, weight in data_param.items():
+                df = feature_df[feature_df['apptype'] == apptype]
+                # 计算score
+                score_df = cal_score(df=df, param=rule_param)
+                score_df['score'] = score_df['score'] * weight
+                score_df_list.append(score_df)
+            # 分数合并
+            df_merged = reduce(merge_df_with_score, score_df_list)
+            # 更新平台回流比
+            df_merged['platform_return_rate'] = df_merged['platform_return'] / df_merged['lastonehour_return']
+            video_rank_h(df=df_merged, now_date=now_date, now_h=now_h,
+                         rule_key=rule_key, param=rule_param, data_key=data_key)
+
+        else:
+            df_list = [feature_df[feature_df['apptype'] == apptype] for apptype, _ in data_param.items()]
+            df_merged = reduce(merge_df, df_list)
+            score_df = cal_score(df=df_merged, param=rule_param)
+            video_rank_h(df=score_df, now_date=now_date, now_h=now_h,
+                         rule_key=rule_key, param=rule_param, data_key=data_key)
+
+
+def h_timer_check():
+    try:
+        project = config_.PROJECT_H_APP_TYPE
+        table = config_.TABLE_H_APP_TYPE
+        rule_params = RULE_PARAMS
+        now_date = datetime.today()
+        log_.info(f"开始执行: {datetime.strftime(now_date, '%Y%m%d%H')}")
+        now_min = datetime.now().minute
+        now_h = datetime.now().hour
+
+        if now_h == 0:
+            log_.info("当前时间{}小时,使用bottom的data,开始。".format(now_h))
+            h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params)
+            log_.info("----------当前时间{}小时,使用bottom的data,完成----------".format(now_h))
+            return
+        # 查看当前小时级更新的数据是否已准备好
+        h_data_count = h_data_check(project=project, table=table, now_date=now_date)
+        if h_data_count > 0:
+            log_.info('上游数据表查询数据条数 h_data_count = {},开始计算。'.format(h_data_count))
+            # 数据准备好,进行更新
+            rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params, project=project, table=table)
+            log_.info("数据4----------正常完成----------")
+        elif now_min > 40:
+            log_.info('当前分钟超过40,预计执行无法完成,使用 bottom data!')
+            h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params)
+            log_.info('----------当前分钟超过40,使用bottom的data,完成----------')
+        else:
+            log_.info("上游数据未就绪,等待...")
+            Timer(60, h_timer_check).start()
+
+    except Exception as e:
+        log_.error(f"不区分地域小时级数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
+        send_msg_to_feishu(
+            webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
+            key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
+            msg_text=f"rov-offline{config_.ENV_TEXT} - 不区分地域小时级数据更新失败\n"
+                     f"exception: {e}\n"
+                     f"traceback: {traceback.format_exc()}"
+        )
+
+
+if __name__ == '__main__':
+    log_.info("文件alg_recsys_recall_1h_noregion.py:「1小时无地域」 开始执行")
+    h_timer_check()

+ 1160 - 0
alg_recsys_recall_1h_region.py

@@ -0,0 +1,1160 @@
+# -*- coding: utf-8 -*-
+import multiprocessing
+import traceback
+import gevent
+import datetime
+import pandas as pd
+import math
+from functools import reduce
+from odps import ODPS
+from threading import Timer
+from utils import MysqlHelper, RedisHelper, get_data_from_odps, filter_video_status, filter_shield_video, \
+    check_table_partition_exits, filter_video_status_app, send_msg_to_feishu, filter_political_videos
+from config import set_config
+from log import Log
+from check_video_limit_distribute import update_limit_video_score
+
+config_, _ = set_config()
+log_ = Log()
+
+region_code = config_.REGION_CODE
+
+
+RULE_PARAMS = {
+    'rule_params': {
+        'rule66': {
+            'view_type': 'video-show-region', 'platform_return_rate': 0.001,
+            'region_24h_rule_key': 'rule66', '24h_rule_key': 'rule66'
+        },
+        'rule67': {
+          'view_type': 'video-show-region', 'platform_return_rate': 0.001,
+        'region_24h_rule_key': 'rule66', '24h_rule_key': 'rule66', 'h_rule_key': 'rule66'
+         },
+         'rule68': {
+             'view_type': 'video-show-region', 'platform_return_rate': 0.001,
+             'region_24h_rule_key': 'rule66', '24h_rule_key': 'rule66',
+             'score_func': 'back_rate_exponential_weighting1'
+         },
+
+    },
+    'data_params': config_.DATA_PARAMS,
+    'params_list': [
+        # 532
+        # {'data': 'data66', 'rule': 'rule66'},  # 523-> 523 & 518
+        {'data': 'data66', 'rule': 'rule67'},  # 523->510
+        # {'data': 'data66', 'rule': 'rule68'},  # 523->514
+        # {'data': 'data66', 'rule': 'rule69'},  # 523->518
+    ],
+}
+
+features = [
+    'apptype',
+    'code',
+    'videoid',
+    'lastonehour_preview',  # 过去1小时预曝光人数 - 区分地域
+    'lastonehour_view',  # 过去1小时曝光人数 - 区分地域
+    'lastonehour_play',  # 过去1小时播放人数 - 区分地域
+    'lastonehour_share',  # 过去1小时分享人数 - 区分地域
+    'lastonehour_return',  # 过去1小时分享,过去1小时回流人数 - 区分地域
+    'lastonehour_preview_total',  # 过去1小时预曝光次数 - 区分地域
+    'lastonehour_view_total',  # 过去1小时曝光次数 - 区分地域
+    'lastonehour_play_total',  # 过去1小时播放次数 - 区分地域
+    'lastonehour_share_total',  # 过去1小时分享次数 - 区分地域
+    'platform_return',
+    'lastonehour_show',  # 不区分地域
+    'lastonehour_show_region',  # 地域分组
+    'lasttwohour_share',  # h-2小时分享人数
+    'lasttwohour_return_now',  # h-2分享,过去1小时回流人数
+    'lasttwohour_return',  # h-2分享,h-2回流人数
+    'lastthreehour_share',  # h-3小时分享人数
+    'lastthreehour_return_now',  # h-3分享,过去1小时回流人数
+    'lastthreehour_return',  # h-3分享,h-3回流人数
+
+    'lastonehour_return_new',  # 过去1小时分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'lasttwohour_return_now_new',  # h-2分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'lasttwohour_return_new',  # h-2分享,h-2回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'lastthreehour_return_now_new',  # h-3分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'lastthreehour_return_new',  # h-3分享,h-3回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'platform_return_new',  # 平台分发回流(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+]
+
+
+def get_region_code(region):
+    """获取省份对应的code"""
+    mysql_helper = MysqlHelper(mysql_info=config_.MYSQL_INFO)
+    sql = f"SELECT ad_code FROM region_adcode WHERE parent_id = 0 AND region LIKE '{region}%';"
+    ad_code = mysql_helper.get_data(sql=sql)
+    return ad_code[0][0]
+
+
+def h_data_check(project, table, now_date):
+    """检查数据是否准备好"""
+    odps = ODPS(
+        access_id=config_.ODPS_CONFIG['ACCESSID'],
+        secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
+        project=project,
+        endpoint=config_.ODPS_CONFIG['ENDPOINT'],
+        connect_timeout=3000,
+        read_timeout=500000,
+        pool_maxsize=1000,
+        pool_connections=1000
+    )
+
+    try:
+        dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
+        check_res = check_table_partition_exits(date=dt, project=project, table=table)
+        if check_res:
+            sql = f'select * from {project}.{table} where dt = {dt}'
+            with odps.execute_sql(sql=sql).open_reader() as reader:
+                data_count = reader.count
+        else:
+            data_count = 0
+    except Exception as e:
+        data_count = 0
+    return data_count
+
+
+def get_rov_redis_key(now_date):
+    """获取rov模型结果存放key"""
+    redis_helper = RedisHelper()
+    now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
+    key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
+    if not redis_helper.key_exists(key_name=key_name):
+        pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
+        key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
+    return key_name
+
+
+def get_day_30day_videos(now_date, data_key, rule_key):
+    """获取天级更新相对30天的视频id"""
+    redis_helper = RedisHelper()
+    day_30day_recall_key_prefix = config_.RECALL_KEY_NAME_PREFIX_30DAY
+    now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
+    day_30day_recall_key_name = f"{day_30day_recall_key_prefix}{data_key}:{rule_key}:{now_dt}"
+    if not redis_helper.key_exists(key_name=day_30day_recall_key_name):
+        redis_dt = datetime.datetime.strftime((now_date - datetime.timedelta(days=1)), '%Y%m%d')
+        day_30day_recall_key_name = f"{day_30day_recall_key_prefix}{data_key}:{rule_key}:{redis_dt}"
+    data = redis_helper.get_all_data_from_zset(key_name=day_30day_recall_key_name, with_scores=True)
+    if data is None:
+        return None
+    video_ids = [int(video_id) for video_id, _ in data]
+    return video_ids
+
+
+def get_feature_data(project, table, now_date):
+    """获取特征数据"""
+    dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
+    # dt = '2022041310'
+    records = get_data_from_odps(date=dt, project=project, table=table)
+    feature_data = []
+    for record in records:
+        item = {}
+        for feature_name in features:
+            item[feature_name] = record[feature_name]
+        feature_data.append(item)
+    feature_df = pd.DataFrame(feature_data)
+    return feature_df
+
+
+def cal_score_initial(df, param):
+    """
+    计算score
+    :param df: 特征数据
+    :param param: 规则参数
+    :return:
+    """
+    # score计算公式: sharerate*backrate*logback*ctr
+    # sharerate = lastonehour_share/(lastonehour_play+1000)
+    # backrate = lastonehour_return/(lastonehour_share+10)
+    # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
+    # score = sharerate * backrate * LOG(lastonehour_return+1) * K2
+
+    df = df.fillna(0)
+    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
+    df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
+    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
+    if param.get('view_type', None) == 'video-show':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
+    elif param.get('view_type', None) == 'video-show-region':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
+    else:
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
+    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
+
+    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
+
+    df['score1'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
+
+    click_score_rate = param.get('click_score_rate', None)
+    back_score_rate = param.get('click_score_rate', None)
+    if click_score_rate is not None:
+        df['score'] = (1 - click_score_rate) * df['score1'] + click_score_rate * df['K2']
+    elif back_score_rate is not None:
+        df['score'] = (1 - back_score_rate) * df['score1'] + back_score_rate * df['back_rate']
+    else:
+        df['score'] = df['score1']
+
+    df = df.sort_values(by=['score'], ascending=False)
+    return df
+
+
+def cal_score_add_return(df, param):
+    # score计算公式: sharerate*(backrate*logback + backrate2*logback_now2 + backrate3*logback_now3)*ctr
+    # sharerate = lastonehour_share/(lastonehour_play+1000)
+    # backrate = lastonehour_return/(lastonehour_share+10)
+    # backrate2 = lasttwohour_return_now/(lasttwohour_share+10)
+    # backrate3 = lastthreehour_return_now/(lastthreehour_share+10)
+    # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
+    # score = k2 * sharerate * (backrate * LOG(lastonehour_return+1) + backrate_2 * LOG(lasttwohour_return_now+1) + backrate_3 * LOG(lastthreehour_return_now+1))
+
+    df = df.fillna(0)
+    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
+    df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
+    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
+    df['back_rate2'] = df['lasttwohour_return_now'] / (df['lasttwohour_share'] + 10)
+    df['log_back2'] = (df['lasttwohour_return_now'] + 1).apply(math.log)
+    df['back_rate3'] = df['lastthreehour_return_now'] / (df['lastthreehour_share'] + 10)
+    df['log_back3'] = (df['lastthreehour_return_now'] + 1).apply(math.log)
+
+    if param.get('view_type', None) == 'video-show':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
+    elif param.get('view_type', None) == 'video-show-region':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
+    else:
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
+    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
+    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
+
+    df['score'] = df['K2'] * df['share_rate'] * (
+            df['back_rate'] * df['log_back'] +
+            df['back_rate2'] * df['log_back2'] +
+            df['back_rate3'] * df['log_back3']
+    )
+
+    df = df.sort_values(by=['score'], ascending=False)
+    return df
+
+
+def cal_score_multiply_return_retention(df, param):
+    # score计算公式: k2 * sharerate * backrate * LOG(lastonehour_return+1) * 前两小时回流留存
+    # sharerate = lastonehour_share/(lastonehour_play+1000)
+    # backrate = lastonehour_return/(lastonehour_share+10)
+    # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
+    # 前两小时回流留存 return_retention_initial = (lasttwohour_return_now + lastthreehour_return_now)/(lasttwohour_return + lastthreehour_return + 1)
+    # return_retention = 0.5 if return_retention_initial == 0 else return_retention_initial
+    # score = k2 * sharerate * backrate * LOG(lastonehour_return+1) * return_retention
+
+    df = df.fillna(0)
+    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
+    df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
+    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
+
+    if param.get('view_type', None) == 'video-show':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
+    elif param.get('view_type', None) == 'video-show-region':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
+    else:
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
+    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
+
+    df['return_retention_initial'] = (df['lasttwohour_return_now'] + df['lastthreehour_return_now']) / \
+                                     (df['lasttwohour_return'] + df['lastthreehour_return'] + 1)
+    df['return_retention'] = df['return_retention_initial'].apply(lambda x: 0.5 if x == 0 else x)
+
+    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
+
+    df['score'] = df['K2'] * df['share_rate'] * df['back_rate'] * df['log_back'] * df['return_retention']
+
+    df = df.sort_values(by=['score'], ascending=False)
+    return df
+
+
+def cal_score_update_backrate(df, param):
+    # score计算公式: k2 * sharerate * (backrate + backrate * backrate_2 * backrate_3) * LOG(lastonehour_return+1)
+    # sharerate = lastonehour_share/(lastonehour_play+1000)
+    # backrate = lastonehour_return/(lastonehour_share+10)
+    # backrate2 = lasttwohour_return_now/(lasttwohour_share+10)
+    # backrate3 = lastthreehour_return_now/(lastthreehour_share+10)
+    # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
+    # backrate1_3_initial = backrate * backrate_2 * backrate_3
+    # backrate1_3 = 0.02 if backrate1_3_initial == 0 else backrate1_3_initial
+    # score = k2 * sharerate * (backrate + backrate1_3) * LOG(lastonehour_return+1)
+
+    df = df.fillna(0)
+    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
+    df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
+    df['back_rate2'] = df['lasttwohour_return_now'] / (df['lasttwohour_share'] + 10)
+    df['back_rate3'] = df['lastthreehour_return_now'] / (df['lastthreehour_share'] + 10)
+    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
+
+    if param.get('view_type', None) == 'video-show':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
+    elif param.get('view_type', None) == 'video-show-region':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
+    else:
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
+    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
+
+    df['backrate1_3_initial'] = df['back_rate'] * df['back_rate2'] * df['back_rate3']
+    df['backrate1_3'] = df['backrate1_3_initial'].apply(lambda x: 0.02 if x == 0 else x)
+    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
+
+    df['score'] = df['K2'] * df['share_rate'] * (df['back_rate'] + df['backrate1_3']) * df['log_back']
+
+    df = df.sort_values(by=['score'], ascending=False)
+    return df
+
+
+def cal_score_with_new_return(df, param):
+    # 回流数据使用 分享限制地域,回流不限制地域 统计数据
+    # score计算公式: sharerate*backrate*logback*ctr
+    # sharerate = lastonehour_share/(lastonehour_play+1000)
+    # backrate = lastonehour_return_new/(lastonehour_share+10)
+    # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
+    # score = sharerate * backrate * LOG(lastonehour_return_new+1) * K2
+
+    df = df.fillna(0)
+    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
+    df['back_rate'] = df['lastonehour_return_new'] / (df['lastonehour_share'] + 10)
+    df['log_back'] = (df['lastonehour_return_new'] + 1).apply(math.log)
+    if param.get('view_type', None) == 'video-show':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
+    elif param.get('view_type', None) == 'video-show-region':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
+    else:
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
+    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
+    df['platform_return_rate'] = df['platform_return_new'] / df['lastonehour_return_new']
+
+    df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
+
+    df = df.sort_values(by=['score'], ascending=False)
+    return df
+
+
+def cal_score_multiply_return_retention_with_new_return(df, param):
+    # 回流数据使用 分享限制地域,回流不限制地域 统计数据
+    # score计算公式: k2 * sharerate * backrate * LOG(lastonehour_return_new+1) * 前两小时回流留存
+    # sharerate = lastonehour_share/(lastonehour_play+1000)
+    # backrate = lastonehour_return_new/(lastonehour_share+10)
+    # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
+    # 前两小时回流留存 return_retention_initial = (lasttwohour_return_now_new + lastthreehour_return_now_new)/(lasttwohour_return_new + lastthreehour_return_new + 1)
+    # return_retention = 0.5 if return_retention_initial == 0 else return_retention_initial
+    # score = k2 * sharerate * backrate * LOG(lastonehour_return_new+1) * return_retention
+
+    df = df.fillna(0)
+    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
+    df['back_rate'] = df['lastonehour_return_new'] / (df['lastonehour_share'] + 10)
+    df['log_back'] = (df['lastonehour_return_new'] + 1).apply(math.log)
+
+    if param.get('view_type', None) == 'video-show':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
+    elif param.get('view_type', None) == 'video-show-region':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
+    else:
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
+    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
+
+    df['return_retention_initial'] = (df['lasttwohour_return_now_new'] + df['lastthreehour_return_now_new']) / \
+                                     (df['lasttwohour_return_new'] + df['lastthreehour_return_new'] + 1)
+    df['return_retention'] = df['return_retention_initial'].apply(lambda x: 0.5 if x == 0 else x)
+
+    df['platform_return_rate'] = df['platform_return_new'] / df['lastonehour_return_new']
+
+    df['score'] = df['K2'] * df['share_rate'] * df['back_rate'] * df['log_back'] * df['return_retention']
+
+    df = df.sort_values(by=['score'], ascending=False)
+    return df
+
+
+def cal_score_with_back_view0(df, param):
+    # score = sharerate*backrate*log(return+1)*CTR,
+    # sharerate=(lastonehour_share+1)/(lastonehour_play+1000)
+    # backrate=(lastonehour_return+1)/(lastonehour_share+10)
+    # CTR=(lastonehour_play+1)/(lastonehour_view+100), ctr不进行校正
+    df = df.fillna(0)
+    df['share_rate'] = (df['lastonehour_share'] + 1) / (df['lastonehour_play'] + 1000)
+    df['back_rate'] = (df['lastonehour_return'] + 1) / (df['lastonehour_share'] + 10)
+    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
+    df['ctr'] = (df['lastonehour_play'] + 1) / (df['lastonehour_view'] + 100)
+    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
+    df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['ctr']
+    df = df.sort_values(by=['score'], ascending=False)
+    return df
+
+
+def cal_score_with_back_view1(df, param):
+    # score = back_play_rate*log(return+1)*CTR,
+    # back_play_rate=(lastonehour_return+1)/(lastonehour_play+1000)
+    # CTR=(lastonehour_play+1)/(lastonehour_view+100), ctr不进行校正
+    df = df.fillna(0)
+    df['back_play_rate'] = (df['lastonehour_return'] + 1) / (df['lastonehour_play'] + 1000)
+    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
+    df['ctr'] = (df['lastonehour_play'] + 1) / (df['lastonehour_view'] + 100)
+    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
+    df['score'] = df['back_play_rate'] * df['log_back'] * df['ctr']
+    df = df.sort_values(by=['score'], ascending=False)
+    return df
+
+
+def cal_score_with_back_rate_exponential_weighting1(df, param):
+    """
+    计算score
+    :param df: 特征数据
+    :param param: 规则参数
+    :return:
+    """
+    # score计算公式: score = sharerate * backrate ^ 2 * LOG(lastonehour_return + 1) * K2
+    # sharerate = lastonehour_share / (lastonehour_play + 1000)
+    # backrate = lastonehour_return / (lastonehour_share + 10)
+    # ctr = lastonehour_play / (lastonehour_show + 1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
+
+    df = df.fillna(0)
+    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
+    df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
+    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
+    if param.get('view_type', None) == 'video-show':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
+    elif param.get('view_type', None) == 'video-show-region':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
+    else:
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
+    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
+
+    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
+
+    df['score'] = df['share_rate'] * df['back_rate'] ** 2 * df['log_back'] * df['K2']
+
+    df = df.sort_values(by=['score'], ascending=False)
+    return df
+
+
+def cal_score_with_back_rate_exponential_weighting2(df, param):
+    """
+    计算score
+    :param df: 特征数据
+    :param param: 规则参数
+    :return:
+    """
+    # score计算公式: score = sharerate ^ 0.5 * backrate ^ 2 * LOG(lastonehour_return + 1) * K2 ^ 0.5
+    # sharerate = lastonehour_share / (lastonehour_play + 1000)
+    # backrate = lastonehour_return / (lastonehour_share + 10)
+    # ctr = lastonehour_play / (lastonehour_show + 1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
+
+    df = df.fillna(0)
+    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
+    df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
+    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
+    if param.get('view_type', None) == 'video-show':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
+    elif param.get('view_type', None) == 'video-show-region':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
+    else:
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
+    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
+
+    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
+
+    df['score'] = df['share_rate'] ** 0.5 * df['back_rate'] ** 2 * df['log_back'] * df['K2'] ** 0.5
+
+    df = df.sort_values(by=['score'], ascending=False)
+    return df
+
+def cal_score_with_back_rate_by_rank_weighting(df, param):
+    """
+    add by sunmingze 20231123
+    计算score
+    :param df: 特征数据
+    :param param: 规则参数
+    :return:
+    """
+    # score计算公式: score =  1 / sharerate(rank)^0.5 + 5 / backrate(rank)^0.5 + 10 / LOG(lastonehour_return +1)(rank) ^0.5
+    #   +  1 / K2(rank)^0.5
+    # sharerate = lastonehour_share / (lastonehour_play + 1000)
+    # backrate = lastonehour_return / (lastonehour_share + 10)
+    # ctr = lastonehour_play / (lastonehour_show + 1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
+
+    df = df.fillna(0)
+    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
+    df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
+    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
+    if param.get('view_type', None) == 'video-show':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
+    elif param.get('view_type', None) == 'video-show-region':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
+    else:
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
+    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
+
+    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
+
+    # 分别的得到sharerate、backrate、K值、return人数的序关系
+    df['rank_by_sharerate'] = df['share_rate'].rank(ascending=0, method='dense')
+    df['rank_by_backrate'] = df['back_rate'].rank(ascending=0, method='dense')
+    df['rank_by_K2'] = df['K2'].rank(ascending=0, method='dense')
+    df['rank_by_logback'] = df['log_back'].rank(ascending=0, method='dense')
+
+    # 计算基于序的加法关系函数
+    df['score'] = 1/(df['rank_by_sharerate'] + 10) + 5/(df['rank_by_backrate'] + 10)
+    df['score'] = df['score'] + 5/(df['rank_by_logback'] + 10) + 1/(df['rank_by_K2'] + 10)
+
+    df = df.sort_values(by=['score'], ascending=False)
+    return df
+
+
+
+
+def cal_score(df, param):
+    if param.get('return_data', None) == 'share_region_return':
+        if param.get('score_func', None) == 'multiply_return_retention':
+            df = cal_score_multiply_return_retention_with_new_return(df=df, param=param)
+        else:
+            df = cal_score_with_new_return(df=df, param=param)
+    else:
+        if param.get('score_func', None) == 'add_backrate*log(return+1)':
+            df = cal_score_add_return(df=df, param=param)
+        elif param.get('score_func', None) == 'multiply_return_retention':
+            df = cal_score_multiply_return_retention(df=df, param=param)
+        elif param.get('score_func', None) == 'update_backrate':
+            df = cal_score_update_backrate(df=df, param=param)
+        elif param.get('score_func', None) == 'back_view0':
+            df = cal_score_with_back_view0(df=df, param=param)
+        elif param.get('score_func', None) == 'back_view1':
+            df = cal_score_with_back_view1(df=df, param=param)
+        elif param.get('score_func', None) == 'back_rate_exponential_weighting1':
+            df = cal_score_with_back_rate_exponential_weighting1(df=df, param=param)
+        elif param.get('score_func', None) == 'back_rate_exponential_weighting2':
+            df = cal_score_with_back_rate_exponential_weighting2(df=df, param=param)
+        elif param.get('score_func', None) == 'back_rate_rank_weighting':
+            df = cal_score_with_back_rate_by_rank_weighting(df=df, param=param)
+        else:
+            df = cal_score_initial(df=df, param=param)
+    return df
+
+
+def add_func1(initial_df, pre_h_df):
+    """当前小时级数据与前几个小时数据合并"""
+    score_list = initial_df['score'].to_list()
+    if len(score_list) > 0:
+        min_score = min(score_list)
+    else:
+        min_score = 0
+    pre_h_df = pre_h_df[pre_h_df['score'] > min_score]
+    df = pd.concat([initial_df, pre_h_df], ignore_index=True)
+    # videoid去重,保留分值高
+    df['videoid'] = df['videoid'].astype(int)
+    df = df.sort_values(by=['score'], ascending=False)
+    df = df.drop_duplicates(subset=['videoid'], keep="first")
+    return df
+
+
+def add_func2(initial_df, pre_h_df):
+    """当前小时级数据与前几个小时数据合并: 当前小时存在的视频以当前小时为准,否则以高分为主"""
+    score_list = initial_df['score'].to_list()
+    if len(score_list) > 0:
+        min_score = min(score_list)
+    else:
+        min_score = 0
+    initial_video_id_list = initial_df['videoid'].to_list()
+    pre_h_df = pre_h_df[pre_h_df['score'] > min_score]
+    pre_h_df = pre_h_df[~pre_h_df['videoid'].isin(initial_video_id_list)]
+
+    df = pd.concat([initial_df, pre_h_df], ignore_index=True)
+    # videoid去重,保留分值高
+    df['videoid'] = df['videoid'].astype(int)
+    df = df.sort_values(by=['score'], ascending=False)
+    df = df.drop_duplicates(subset=['videoid'], keep="first")
+    return df
+
+
+def add_videos(initial_df, now_date, rule_key, region, data_key, hour_count, top, add_func):
+    """
+    地域小时级数据列表中增加前6h优质视频
+    :param initial_df: 地域小时级筛选结果
+    :param now_date:
+    :param data_key:
+    :param region:
+    :param rule_key:
+    :param hour_count: 前几个小时, type-int
+    :param top: type-int
+    :return: df
+    """
+    redis_helper = RedisHelper()
+    pre_h_data = []
+    for i in range(1, hour_count+1):
+        pre_date = now_date - datetime.timedelta(hours=i)
+        pre_h = pre_date.hour
+        pre_h_recall_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H}{region}:{data_key}:{rule_key}:" \
+                                f"{datetime.datetime.strftime(pre_date, '%Y%m%d')}:{pre_h}"
+        pre_h_top_data = redis_helper.get_data_zset_with_index(key_name=pre_h_recall_key_name,
+                                                               start=0, end=top-1,
+                                                               desc=True, with_scores=True)
+        if pre_h_top_data is None:
+            continue
+        pre_h_data.extend(pre_h_top_data)
+    pre_h_df = pd.DataFrame(data=pre_h_data, columns=['videoid', 'score'])
+    if add_func == 'func2':
+        df = add_func2(initial_df=initial_df, pre_h_df=pre_h_df)
+    else:
+        df = add_func1(initial_df=initial_df, pre_h_df=pre_h_df)
+    return df
+
+
+def video_rank(df, now_date, now_h, rule_key, param, region, data_key, rule_rank_h_flag,
+               add_videos_with_pre_h=False, hour_count=0):
+    """
+    获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
+    :param df:
+    :param now_date:
+    :param now_h:
+    :param rule_key: 小时级数据进入条件
+    :param param: 小时级数据进入条件参数
+    :param region: 所属地域
+    :return:
+    """
+    redis_helper = RedisHelper()
+
+    # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005
+    return_count = param.get('return_count', 1)
+    score_value = param.get('score_rule', 0)
+    platform_return_rate = param.get('platform_return_rate', 0)
+    h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value)
+                     & (df['platform_return_rate'] >= platform_return_rate)]
+
+    # videoid重复时,保留分值高
+    h_recall_df = h_recall_df.sort_values(by=['score'], ascending=False)
+    h_recall_df = h_recall_df.drop_duplicates(subset=['videoid'], keep='first')
+    h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
+
+    log_.info(f"各种规则过滤后,一共有多少个视频 = {len(h_recall_df)}")
+    # 增加打捞的优质视频
+    if add_videos_with_pre_h is True:
+        add_func = param.get('add_func', None)
+        h_recall_df = add_videos(initial_df=h_recall_df, now_date=now_date, rule_key=rule_key,
+                                 region=region, data_key=data_key, hour_count=hour_count, top=10, add_func=add_func)
+        log_.info(f"打捞优质视频完成")
+    h_recall_videos = h_recall_df['videoid'].to_list()
+    log_.info(f"各种规则增加后,一共有多少个视频 = {len(h_recall_videos)}")
+    # 视频状态过滤
+    if data_key in ['data7', ]:
+        filtered_videos = filter_video_status_app(h_recall_videos)
+    else:
+        filtered_videos = filter_video_status(h_recall_videos)
+
+    # 屏蔽视频过滤
+    shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
+    shield_key_name_list = shield_config.get(region, None)
+    if shield_key_name_list is not None:
+        filtered_videos = filter_shield_video(video_ids=filtered_videos, shield_key_name_list=shield_key_name_list)
+
+    # 涉政视频过滤
+    political_filter = param.get('political_filter', None)
+    if political_filter is True:
+        filtered_videos = filter_political_videos(video_ids=filtered_videos)
+    log_.info(f"视频状态-涉政等-过滤后,一共有多少个视频 = {len(filtered_videos)}")
+
+
+    h_video_ids = []
+    by_30day_rule_key = param.get('30day_rule_key', None)
+    if by_30day_rule_key is not None:
+        # 与相对30天列表去重
+        h_video_ids = get_day_30day_videos(now_date=now_date, data_key=data_key, rule_key=by_30day_rule_key)
+        if h_video_ids is not None:
+            filtered_videos = [video_id for video_id in filtered_videos if int(video_id) not in h_video_ids]
+
+    # 写入对应的redis
+    h_recall_result = {}
+    for video_id in filtered_videos:
+        score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
+        h_recall_result[int(video_id)] = float(score)
+        h_video_ids.append(int(video_id))
+    h_recall_key_name = \
+        f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H}{region}:{data_key}:{rule_key}:" \
+        f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+    log_.info("打印地域1小时的某个地域{},redis key:{}".format(region, h_recall_key_name))
+    if len(h_recall_result) > 0:
+        log_.info(f"开始写入头部数据:count = {len(h_recall_result)}, key = {h_recall_key_name}")
+        redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=2 * 24 * 3600)
+        # 限流视频score调整
+        tmp = update_limit_video_score(initial_videos=h_recall_result, key_name=h_recall_key_name)
+        if tmp:
+            log_.info(f"走了限流逻辑后:count = {len(h_recall_result)}, key = {h_recall_key_name}")
+        else:
+            log_.info("走了限流逻辑,但没更改redis,未生效。")
+        # 清空线上过滤应用列表
+        # redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER}{region}.{app_type}.{data_key}.{rule_key}")
+    else:
+        log_.info(f"无数据,不写入。")
+
+    # h_rule_key = param.get('h_rule_key', None)
+    # region_24h_rule_key = param.get('region_24h_rule_key', 'rule1')
+    # by_24h_rule_key = param.get('24h_rule_key', None)
+    # by_48h_rule_key = param.get('48h_rule_key', None)
+    # dup_remove = param.get('dup_remove', True)
+    # # 与其他召回视频池去重,存入对应的redis
+    # dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, h_rule_key=h_rule_key,
+    #              region_24h_rule_key=region_24h_rule_key, by_24h_rule_key=by_24h_rule_key,
+    #              by_48h_rule_key=by_48h_rule_key, region=region, data_key=data_key,
+    #              rule_rank_h_flag=rule_rank_h_flag, political_filter=political_filter,
+    #              shield_config=shield_config, dup_remove=dup_remove)
+
+
+def dup_data(h_video_ids, initial_key_name, dup_key_name, region, political_filter, shield_config, dup_remove):
+    redis_helper = RedisHelper()
+    if redis_helper.key_exists(key_name=initial_key_name):
+        initial_data = redis_helper.get_all_data_from_zset(key_name=initial_key_name, with_scores=True)
+        # 屏蔽视频过滤
+        initial_video_ids = [int(video_id) for video_id, _ in initial_data]
+        shield_key_name_list = shield_config.get(region, None)
+        if shield_key_name_list is not None:
+            initial_video_ids = filter_shield_video(video_ids=initial_video_ids,
+                                                    shield_key_name_list=shield_key_name_list)
+        # 涉政视频过滤
+        if political_filter is True:
+            initial_video_ids = filter_political_videos(video_ids=initial_video_ids)
+
+        dup_data = {}
+        # 视频去重逻辑
+        if dup_remove is True:
+            for video_id, score in initial_data:
+                if int(video_id) not in h_video_ids and int(video_id) in initial_video_ids:
+                    dup_data[int(video_id)] = score
+                    h_video_ids.append(int(video_id))
+        else:
+            for video_id, score in initial_data:
+                if int(video_id) in initial_video_ids:
+                    dup_data[int(video_id)] = score
+
+        if len(dup_data) > 0:
+            redis_helper.add_data_with_zset(key_name=dup_key_name, data=dup_data, expire_time=2 * 24 * 3600)
+            # 限流视频score调整
+            update_limit_video_score(initial_videos=dup_data, key_name=dup_key_name)
+    return h_video_ids
+
+
+def dup_to_redis(h_video_ids, now_date, now_h, rule_key, h_rule_key, region_24h_rule_key, by_24h_rule_key, by_48h_rule_key,
+                 region, data_key, rule_rank_h_flag, political_filter, shield_config, dup_remove):
+    """将地域分组小时级数据与其他召回视频池去重,存入对应的redis"""
+    # ##### 去重更新不区分地域小时级列表,并另存为redis中
+    if h_rule_key is not None:
+        h_key_name = \
+            f"{config_.RECALL_KEY_NAME_PREFIX_BY_H_H}{data_key}:{h_rule_key}:" \
+            f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+        h_dup_key_name = \
+            f"{config_.RECALL_KEY_NAME_PREFIX_DUP_H_H}{region}:{data_key}:{rule_key}:" \
+            f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+        h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_key_name,
+                               dup_key_name=h_dup_key_name, region=region, political_filter=political_filter,
+                               shield_config=shield_config, dup_remove=dup_remove)
+
+    # ##### 去重更新地域分组小时级24h列表,并另存为redis中
+    region_24h_key_name = \
+        f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H}{region}:{data_key}:{region_24h_rule_key}:" \
+        f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+    region_24h_dup_key_name = \
+        f"{config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
+        f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+    h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=region_24h_key_name,
+                           dup_key_name=region_24h_dup_key_name, region=region, political_filter=political_filter,
+                           shield_config=shield_config, dup_remove=dup_remove)
+
+    if rule_rank_h_flag == '48h':
+
+        # ##### 去重小程序相对48h更新结果,并另存为redis中
+        h_48h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_48H}{data_key}:{by_48h_rule_key}:" \
+                         f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+        h_48h_dup_key_name = \
+            f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_48H_H}{region}:{data_key}:{rule_key}:" \
+            f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+        h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_48h_key_name,
+                               dup_key_name=h_48h_dup_key_name, region=region, political_filter=political_filter,
+                               shield_config=shield_config, dup_remove=dup_remove)
+
+        # ##### 去重小程序相对48h 筛选后剩余数据 更新结果,并另存为redis中
+        if by_48h_rule_key == 'rule1':
+            other_h_48h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_48H_OTHER}{data_key}:" \
+                                   f"{by_48h_rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+            other_h_48h_dup_key_name = \
+                f"{config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_48H_H}{region}:{data_key}:{rule_key}:" \
+                f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+            h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=other_h_48h_key_name,
+                                   dup_key_name=other_h_48h_dup_key_name, region=region,
+                                   political_filter=political_filter, shield_config=shield_config,
+                                   dup_remove=dup_remove)
+
+    else:
+        # ##### 去重小程序相对24h更新结果,并另存为redis中
+        h_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}{data_key}:{by_24h_rule_key}:" \
+                         f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+        h_24h_dup_key_name = \
+            f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
+            f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+        h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_24h_key_name,
+                               dup_key_name=h_24h_dup_key_name, region=region, political_filter=political_filter,
+                               shield_config=shield_config, dup_remove=dup_remove)
+
+        # ##### 去重小程序相对24h 筛选后剩余数据 更新结果,并另存为redis中
+        # if by_24h_rule_key in ['rule3', 'rule4']:
+        other_h_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H_OTHER}{data_key}:" \
+                               f"{by_24h_rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+        other_h_24h_dup_key_name = \
+            f"{config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
+            f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+        h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=other_h_24h_key_name,
+                               dup_key_name=other_h_24h_dup_key_name, region=region, political_filter=political_filter,
+                               shield_config=shield_config, dup_remove=dup_remove)
+
+    # ##### 去重小程序模型更新结果,并另存为redis中
+    # model_key_name = get_rov_redis_key(now_date=now_date)
+    # model_data_dup_key_name = \
+    #     f"{config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_H}{region}:{data_key}:{rule_key}:" \
+    #     f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+    # h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=model_key_name,
+    #                        dup_key_name=model_data_dup_key_name, region=region)
+
+
+def merge_df(df_left, df_right):
+    """
+    df按照videoid, code 合并,对应特征求和
+    :param df_left:
+    :param df_right:
+    :return:
+    """
+    df_merged = pd.merge(df_left, df_right, on=['videoid', 'code'], how='outer', suffixes=['_x', '_y'])
+    df_merged.fillna(0, inplace=True)
+    feature_list = ['videoid', 'code']
+    for feature in features:
+        if feature in ['apptype', 'videoid', 'code']:
+            continue
+        df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
+        feature_list.append(feature)
+    return df_merged[feature_list]
+
+
+def merge_df_with_score(df_left, df_right):
+    """
+    df 按照[videoid, code]合并,平台回流人数、回流人数、分数 分别求和
+    :param df_left:
+    :param df_right:
+    :return:
+    """
+    df_merged = pd.merge(df_left, df_right, on=['videoid', 'code'], how='outer', suffixes=['_x', '_y'])
+    df_merged.fillna(0, inplace=True)
+    feature_list = ['videoid', 'code', 'lastonehour_return', 'platform_return', 'score']
+    for feature in feature_list[2:]:
+        df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
+    return df_merged[feature_list]
+
+
+def process_with_region(region, df_merged, data_key, rule_key, rule_param, now_date, now_h,
+                        rule_rank_h_flag, add_videos_with_pre_h, hour_count):
+    log_.info(f"多协程的region = {region} 开始执行")
+    region_df = df_merged[df_merged['code'] == region]
+    log_.info(f'该区域region = {region}, 下有多少数据量 = {len(region_df)}')
+    score_df = cal_score(df=region_df, param=rule_param)
+    video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=rule_key, param=rule_param,
+               region=region, data_key=data_key, rule_rank_h_flag=rule_rank_h_flag,
+               add_videos_with_pre_h=add_videos_with_pre_h, hour_count=hour_count)
+    log_.info(f"多协程的region = {region} 完成执行")
+
+
+def process_with_region2(region, df_merged, data_key, rule_key, rule_param, now_date, now_h,
+                         rule_rank_h_flag, add_videos_with_pre_h, hour_count):
+    log_.info(f"region = {region} start...")
+    region_score_df = df_merged[df_merged['code'] == region]
+    log_.info(f'region = {region}, region_score_df count = {len(region_score_df)}')
+    video_rank(df=region_score_df, now_date=now_date, now_h=now_h, region=region,
+               rule_key=rule_key, param=rule_param, data_key=data_key, rule_rank_h_flag=rule_rank_h_flag,
+               add_videos_with_pre_h=add_videos_with_pre_h, hour_count=hour_count)
+    log_.info(f"region = {region} end!")
+
+
+def process_with_app_type(app_type, params, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag):
+    log_.info(f"app_type = {app_type} start...")
+    data_params_item = params.get('data_params')
+    rule_params_item = params.get('rule_params')
+    task_list = []
+    for param in params.get('params_list'):
+        data_key = param.get('data')
+        data_param = data_params_item.get(data_key)
+        log_.info(f"data_key = {data_key}, data_param = {data_param}")
+        df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
+        df_merged = reduce(merge_df, df_list)
+
+        rule_key = param.get('rule')
+        rule_param = rule_params_item.get(rule_key)
+        log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
+        task_list.extend(
+            [
+                gevent.spawn(process_with_region, region, df_merged, app_type, data_key, rule_key, rule_param,
+                             now_date, now_h, rule_rank_h_flag)
+                for region in region_code_list
+            ]
+        )
+    gevent.joinall(task_list)
+    log_.info(f"app_type = {app_type} end!")
+
+
+    # log_.info(f"app_type = {app_type}")
+    # task_list = []
+    # for data_key, data_param in params['data_params'].items():
+    #     log_.info(f"data_key = {data_key}, data_param = {data_param}")
+    #     df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
+    #     df_merged = reduce(merge_df, df_list)
+    #     for rule_key, rule_param in params['rule_params'].items():
+    #         log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
+    #         task_list.extend(
+    #             [
+    #                 gevent.spawn(process_with_region, region, df_merged, app_type, data_key, rule_key, rule_param,
+    #                              now_date, now_h)
+    #                 for region in region_code_list
+    #             ]
+    #         )
+    # gevent.joinall(task_list)
+
+
+def copy_data_for_city(region, city_code, data_key, rule_key, now_date, now_h, shield_config):
+    """copy 对应数据到城市对应redis,并做相应屏蔽视频过滤"""
+    log_.info(f"city_code = {city_code} start ...")
+    redis_helper = RedisHelper()
+    key_prefix_list = [
+        config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H,  # 地域小时级
+        config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_24H_H,  # 地域相对24h
+        config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_24H_H,  # 不区分地域相对24h
+        config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_24H_H,  # 不区分地域相对24h筛选后
+        config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_H,  # rov大列表
+    ]
+    for key_prefix in key_prefix_list:
+        region_key = f"{key_prefix}{region}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+        city_key = f"{key_prefix}{city_code}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+        if not redis_helper.key_exists(key_name=region_key):
+            continue
+        region_data = redis_helper.get_all_data_from_zset(key_name=region_key, with_scores=True)
+        if not region_data:
+            continue
+        # 屏蔽视频过滤
+        region_video_ids = [int(video_id) for video_id, _ in region_data]
+        shield_key_name_list = shield_config.get(city_code, None)
+        # shield_key_name_list = config_.SHIELD_CONFIG.get(city_code, None)
+        if shield_key_name_list is not None:
+            filtered_video_ids = filter_shield_video(video_ids=region_video_ids,
+                                                     shield_key_name_list=shield_key_name_list)
+        else:
+            filtered_video_ids = region_video_ids
+        city_data = {}
+        for video_id, score in region_data:
+            if int(video_id) in filtered_video_ids:
+                city_data[int(video_id)] = score
+
+        if len(city_data) > 0:
+            redis_helper.add_data_with_zset(key_name=city_key, data=city_data, expire_time=2 * 24 * 3600)
+
+    log_.info(f"city_code = {city_code} end!")
+
+
+def process_with_param(param, data_params_item, rule_params_item, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag):
+    data_key = param.get('data')
+    data_param = data_params_item.get(data_key)
+    rule_key = param.get('rule')
+    rule_param = rule_params_item.get(rule_key)
+    merge_func = rule_param.get('merge_func', None)
+    log_.info("数据采用:{},统计采用{}.".format(data_key, rule_key))
+    log_.info("具体的规则是:{}.".format(rule_param))
+    # 是否在地域小时级数据中增加打捞的优质视频
+    add_videos_with_pre_h = rule_param.get('add_videos_with_pre_h', False)
+    hour_count = rule_param.get('hour_count', 0)
+
+    if merge_func == 2:
+        score_df_list = []
+        for apptype, weight in data_param.items():
+            df = feature_df[feature_df['apptype'] == apptype]
+            # 计算score
+            score_df = cal_score(df=df, param=rule_param)
+            score_df['score'] = score_df['score'] * weight
+            score_df_list.append(score_df)
+        # 分数合并
+        df_merged = reduce(merge_df_with_score, score_df_list)
+        # 更新平台回流比
+        df_merged['platform_return_rate'] = df_merged['platform_return'] / df_merged['lastonehour_return']
+        task_list = [
+            gevent.spawn(process_with_region2,
+                         region, df_merged, data_key, rule_key, rule_param, now_date, now_h, rule_rank_h_flag,
+                         add_videos_with_pre_h, hour_count)
+            for region in region_code_list
+        ]
+    else:
+        df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
+        df_merged = reduce(merge_df, df_list)
+        task_list = [
+            gevent.spawn(process_with_region,
+                         region, df_merged, data_key, rule_key, rule_param, now_date, now_h, rule_rank_h_flag,
+                         add_videos_with_pre_h, hour_count)
+            for region in region_code_list
+        ]
+
+    gevent.joinall(task_list)
+
+    # 特殊城市视频数据准备
+    # 屏蔽视频过滤
+    # shield_config = rule_param.get('shield_config', config_.SHIELD_CONFIG)
+    # for region, city_list in config_.REGION_CITY_MAPPING.items():
+    #     t = [
+    #         gevent.spawn(
+    #             copy_data_for_city,
+    #             region, city_code, data_key, rule_key, now_date, now_h, shield_config
+    #         )
+    #         for city_code in city_list
+    #     ]
+    #     gevent.joinall(t)
+    log_.info(f"多进程的 param = {param} 完成执行!")
+
+
+def rank_by_h(project, table, now_date, now_h, rule_params, region_code_list, rule_rank_h_flag):
+    # 获取特征数据
+    feature_df = get_feature_data(project=project, table=table, now_date=now_date)
+    feature_df['apptype'] = feature_df['apptype'].astype(int)
+    data_params_item = rule_params.get('data_params')
+    rule_params_item = rule_params.get('rule_params')
+    params_list = rule_params.get('params_list')
+    pool = multiprocessing.Pool(processes=len(params_list))
+    for param in params_list:
+        pool.apply_async(
+            func=process_with_param,
+            args=(param, data_params_item, rule_params_item, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag)
+        )
+    pool.close()
+    pool.join()
+
+
+
+def h_bottom_process(param, rule_params_item, region_code_list, key_prefix, redis_dt, redis_h,
+                     now_date, now_h, rule_rank_h_flag):
+    redis_helper = RedisHelper()
+    data_key = param.get('data')
+    rule_key = param.get('rule')
+    rule_param = rule_params_item.get(rule_key)
+    log_.info(f"data_key = {data_key}, rule_key = {rule_key}, rule_param = {rule_param}")
+    h_rule_key = rule_param.get('h_rule_key', None)
+    region_24h_rule_key = rule_param.get('region_24h_rule_key', 'rule1')
+    by_24h_rule_key = rule_param.get('24h_rule_key', None)
+    by_48h_rule_key = rule_param.get('48h_rule_key', None)
+    # 涉政视频过滤
+    political_filter = param.get('political_filter', None)
+    # 屏蔽视频过滤
+    shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
+    dup_remove = param.get('dup_remove', True)
+    for region in region_code_list:
+        log_.info(f"region = {region}")
+        key_name = f"{key_prefix}{region}:{data_key}:{rule_key}:{redis_dt}:{redis_h}"
+        initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
+        if initial_data is None:
+            initial_data = []
+        final_data = dict()
+        h_video_ids = []
+        for video_id, score in initial_data:
+            final_data[video_id] = score
+            h_video_ids.append(int(video_id))
+        # 存入对应的redis
+        final_key_name = \
+            f"{key_prefix}{region}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+        if len(final_data) > 0:
+            redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=2 * 24 * 3600)
+        # 与其他召回视频池去重,存入对应的redis
+        dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, h_rule_key=h_rule_key,
+                     region_24h_rule_key=region_24h_rule_key, region=region,
+                     data_key=data_key, by_24h_rule_key=by_24h_rule_key,
+                     by_48h_rule_key=by_48h_rule_key, rule_rank_h_flag=rule_rank_h_flag,
+                     political_filter=political_filter, shield_config=shield_config, dup_remove=dup_remove)
+    # 特殊城市视频数据准备
+    for region, city_list in config_.REGION_CITY_MAPPING.items():
+        t = [
+            gevent.spawn(
+                copy_data_for_city,
+                region, city_code, data_key, rule_key, now_date, now_h, shield_config
+            )
+            for city_code in city_list
+        ]
+        gevent.joinall(t)
+
+
+def h_rank_bottom(now_date, now_h, rule_params, region_code_list, rule_rank_h_flag):
+    """未按时更新数据,用上一小时结果作为当前小时的数据"""
+    # 获取rov模型结果
+    # redis_helper = RedisHelper()
+    if now_h == 0:
+        redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
+        redis_h = 23
+    else:
+        redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
+        redis_h = now_h - 1
+
+    # 以上一小时的地域分组数据作为当前小时的数据
+    key_prefix = config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H
+    rule_params_item = rule_params.get('rule_params')
+    params_list = rule_params.get('params_list')
+    pool = multiprocessing.Pool(processes=len(params_list))
+    for param in params_list:
+        pool.apply_async(
+            func=h_bottom_process,
+            args=(param, rule_params_item, region_code_list, key_prefix, redis_dt, redis_h, now_date, now_h, rule_rank_h_flag)
+        )
+    pool.close()
+    pool.join()
+
+
+def h_timer_check():
+    try:
+        rule_rank_h_flag = "24h"
+        rule_params = RULE_PARAMS
+        project = config_.PROJECT_REGION_APP_TYPE
+        table = config_.TABLE_REGION_APP_TYPE
+        region_code_list = [code for region, code in region_code.items()]
+        now_date = datetime.datetime.today()
+        log_.info(f"开始执行: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
+        now_h = datetime.datetime.now().hour
+        now_min = datetime.datetime.now().minute
+        if now_h == 0:
+            log_.info("当前时间{}小时,使用bottom的data,开始。".format(now_h))
+            h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list,
+                          rule_rank_h_flag=rule_rank_h_flag)
+            log_.info("----------当前时间{}小时,使用bottom的data,完成----------".format(now_h))
+            return
+        # 查看当前小时更新的数据是否已准备好
+        h_data_count = h_data_check(project=project, table=table, now_date=now_date)
+        if h_data_count > 0:
+            log_.info('上游数据表查询数据条数 h_data_count = {},开始计算。'.format(h_data_count))
+            # 数据准备好,进行更新
+            rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params,
+                      project=project, table=table, region_code_list=region_code_list, rule_rank_h_flag=rule_rank_h_flag)
+            log_.info("数据1----------正常完成----------")
+        elif now_min > 40:
+            log_.info('当前分钟超过40,预计执行无法完成,使用 bottom data!')
+            h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list,
+                          rule_rank_h_flag=rule_rank_h_flag)
+            log_.info('----------当前分钟超过40,使用bottom的data,完成----------')
+        else:
+            # 数据没准备好,1分钟后重新检查
+            log_.info("上游数据未就绪,等待...")
+            Timer(60, h_timer_check).start()
+        # send_msg_to_feishu(
+        #     webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
+        #     key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
+        #     msg_text=f"rov-offline{config_.ENV_TEXT} - 推荐视频数据更新完成\n"
+        #              f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d')}\n"
+        #              f"now_h: {now_h}\n"
+        #              f"finished time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}"
+        # )
+    except Exception as e:
+        log_.error(f"地域分组小时级数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
+        send_msg_to_feishu(
+            webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
+            key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
+            msg_text=f"rov-offline{config_.ENV_TEXT} - 地域分组小时级数据更新失败\n"
+                     f"exception: {e}\n"
+                     f"traceback: {traceback.format_exc()}"
+        )
+
+
+if __name__ == '__main__':
+    log_.info("文件alg_recsys_recall_1h_region.py:「1小时地域」 开始执行")
+    h_timer_check()

+ 440 - 0
alg_recsys_recall_24h_noregion.py

@@ -0,0 +1,440 @@
+# -*- coding: utf-8 -*-
+import pandas as pd
+import traceback
+from functools import reduce
+from odps import ODPS
+from threading import Timer
+from datetime import datetime, timedelta
+from get_data import get_data_from_odps
+from db_helper import RedisHelper
+from utils import filter_video_status, check_table_partition_exits, filter_video_status_app, \
+    request_post, send_msg_to_feishu
+from config import set_config
+from log import Log
+
+config_, _ = set_config()
+log_ = Log()
+
+
+RULE_PARAMS = {
+    'rule_params': {
+        'rule66': {'cal_score_func': 2, 'return_count': 100, 'platform_return_rate': 0.001, 'view_type': 'preview'},
+    },
+    'data_params': config_.DATA_PARAMS,
+    'params_list': [
+        {'data': 'data66', 'rule': 'rule66'},
+    ]
+}
+
+features = [
+    'apptype',
+    'videoid',
+    'preview人数',  # 过去24h预曝光人数
+    'view人数',  # 过去24h曝光人数
+    'play人数',  # 过去24h播放人数
+    'share人数',  # 过去24h分享人数
+    '回流人数',  # 过去24h分享,过去24h回流人数
+    'preview次数',  # 过去24h预曝光次数
+    'view次数',  # 过去24h曝光次数
+    'play次数',  # 过去24h播放次数
+    'share次数',  # 过去24h分享次数
+    'platform_return',
+    'platform_preview',
+    'platform_preview_total',
+    'platform_show',
+    'platform_show_total',
+    'platform_view',
+    'platform_view_total',
+]
+
+
+def get_rov_redis_key(now_date):
+    # 获取rov模型结果存放key
+    redis_helper = RedisHelper()
+    now_dt = datetime.strftime(now_date, '%Y%m%d')
+    key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
+    if not redis_helper.key_exists(key_name=key_name):
+        pre_dt = datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')
+        key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
+    return key_name
+
+
+def h_data_check(project, table, now_date, now_h):
+    """检查数据是否准备好"""
+    odps = ODPS(
+        access_id=config_.ODPS_CONFIG['ACCESSID'],
+        secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
+        project=project,
+        endpoint=config_.ODPS_CONFIG['ENDPOINT'],
+        connect_timeout=3000,
+        read_timeout=500000,
+        pool_maxsize=1000,
+        pool_connections=1000
+    )
+
+    try:
+        # 23点开始到8点之前(不含8点),全部用22点生成那个列表
+        if now_h == 23:
+            dt = datetime.strftime(now_date - timedelta(hours=1), '%Y%m%d%H')
+        elif now_h < 8:
+            dt = f"{datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')}22"
+        else:
+            dt = datetime.strftime(now_date, '%Y%m%d%H')
+        check_res = check_table_partition_exits(date=dt, project=project, table=table)
+        if check_res:
+            sql = f'select * from {project}.{table} where dt = {dt}'
+            with odps.execute_sql(sql=sql).open_reader() as reader:
+                data_count = reader.count
+        else:
+            data_count = 0
+    except Exception as e:
+        data_count = 0
+    return data_count
+
+
+def get_feature_data(now_date, now_h, project, table):
+    """获取特征数据"""
+    # 23点开始到8点之前(不含8点),全部用22点生成那个列表
+    if now_h == 23:
+        dt = datetime.strftime(now_date - timedelta(hours=1), '%Y%m%d%H')
+    elif now_h < 8:
+        dt = f"{datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')}22"
+    else:
+        dt = datetime.strftime(now_date, '%Y%m%d%H')
+    log_.info({'feature_dt': dt})
+    # dt = '20220425'
+    records = get_data_from_odps(date=dt, project=project, table=table)
+    feature_data = []
+    for record in records:
+        item = {}
+        for feature_name in features:
+            item[feature_name] = record[feature_name]
+        feature_data.append(item)
+    feature_df = pd.DataFrame(feature_data)
+    return feature_df
+
+
+def cal_score1(df):
+    # score1计算公式: score = 回流人数/(view人数+10000)
+    df = df.fillna(0)
+    df['score'] = df['回流人数'] / (df['view人数'] + 1000)
+    df = df.sort_values(by=['score'], ascending=False)
+    return df
+
+
+def cal_score2(df, param):
+    # score2计算公式: score = share次数/(view+1000)+0.01*return/(share次数+100)
+    df = df.fillna(0)
+    if param.get('view_type', None) == 'video-show':
+        df['share_rate'] = df['share次数'] / (df['platform_show'] + 1000)
+    elif param.get('view_type', None) == 'preview':
+        df['share_rate'] = df['share次数'] / (df['preview人数'] + 1000)
+    else:
+        df['share_rate'] = df['share次数'] / (df['view人数'] + 1000)
+    df['back_rate'] = df['回流人数'] / (df['share次数'] + 100)
+    df['score'] = df['share_rate'] + 0.01 * df['back_rate']
+    df['platform_return_rate'] = df['platform_return'] / df['回流人数']
+    df = df.sort_values(by=['score'], ascending=False)
+    return df
+
+
+def cal_score(df, param):
+    # score计算公式: score1 = share次数/(view+1000)+0.01*return/(share次数+100)
+    # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
+    # score = 0.3 * score1 + 0.7 * K2
+    df = df.fillna(0)
+    if param.get('view_type', None) == 'video-show':
+        df['share_rate'] = df['share次数'] / (df['platform_show'] + 1000)
+        df['ctr'] = df['play人数'] / (df['platform_show'] + 1000)
+    elif param.get('view_type', None) == 'preview':
+        df['share_rate'] = df['share次数'] / (df['preview人数'] + 1000)
+        df['ctr'] = df['play人数'] / (df['preview人数'] + 1000)
+    else:
+        df['share_rate'] = df['share次数'] / (df['platform_show'] + 1000)
+        df['ctr'] = df['play人数'] / (df['platform_show'] + 1000)
+
+    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
+    df['back_rate'] = df['回流人数'] / (df['share次数'] + 100)
+    df['platform_return_rate'] = df['platform_return'] / df['回流人数']
+
+    df['score1'] = df['share_rate'] + 0.01 * df['back_rate']
+
+    click_score_rate = param.get('click_score_rate', None)
+    back_score_rate = param.get('click_score_rate', None)
+    if click_score_rate is not None:
+        df['score'] = (1 - click_score_rate) * df['score1'] + click_score_rate * df['K2']
+    elif back_score_rate is not None:
+        df['score'] = (1 - back_score_rate) * df['score1'] + back_score_rate * df['back_rate']
+    else:
+        df['score'] = df['score1']
+
+    df = df.sort_values(by=['score'], ascending=False)
+    return df
+
+
+def video_rank_h(df, now_date, now_h, rule_key, param, data_key, notify_backend):
+    """
+    获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
+    :param df:
+    :param now_date:
+    :param now_h:
+    :param rule_key: 天级规则数据进入条件
+    :param param: 天级规则数据进入条件参数
+    :param data_key: 使用数据标识
+    :param notify_backend: 是否同步给后端标识
+    :return:
+    """
+    redis_helper = RedisHelper()
+    log_.info(f"一共有多少个视频 = {len(df)}")
+
+    # videoid重复时,保留分值高
+    df = df.sort_values(by=['score'], ascending=False)
+    df = df.drop_duplicates(subset=['videoid'], keep='first')
+    df['videoid'] = df['videoid'].astype(int)
+
+    # 获取符合进入召回源条件的视频
+    return_count = param.get('return_count')
+    if return_count:
+        day_recall_df = df[df['回流人数'] > return_count]
+    else:
+        day_recall_df = df
+    log_.info(f"回流量-过滤后,一共有多少个视频 = {len(day_recall_df)}")
+    platform_return_rate = param.get('platform_return_rate', 0)
+    day_recall_df = day_recall_df[day_recall_df['platform_return_rate'] > platform_return_rate]
+    day_recall_videos = day_recall_df['videoid'].to_list()
+    log_.info(f"回流率-过滤后,一共有多少个视频 = {len(day_recall_videos)}")
+    # 视频状态过滤
+    if data_key in ['data7', ]:
+        filtered_videos = filter_video_status_app(day_recall_videos)
+    else:
+        filtered_videos = filter_video_status(day_recall_videos)
+    log_.info(f"视频状态-过滤后,一共有多少个视频 = {len(filtered_videos)}")
+
+    # 写入对应的redis
+    now_dt = datetime.strftime(now_date, '%Y%m%d')
+    day_video_ids = []
+    day_recall_result = {}
+    for video_id in filtered_videos:
+        score = day_recall_df[day_recall_df['videoid'] == video_id]['score']
+        day_recall_result[int(video_id)] = float(score)
+        day_video_ids.append(int(video_id))
+
+    # recall:item:score:24h:
+    h_24h_recall_key_name = \
+        f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}{data_key}:{rule_key}:{now_dt}:{now_h}"
+    log_.info("打印非地域24小时redis key:{}".format(h_24h_recall_key_name))
+    if len(day_recall_result) > 0:
+        log_.info(f"开始写入头部数据:count = {len(day_recall_result)}, key = {h_24h_recall_key_name}")
+        redis_helper.add_data_with_zset(key_name=h_24h_recall_key_name, data=day_recall_result, expire_time=2 * 3600)
+    else:
+        log_.info(f"无数据,不写入。")
+
+    # ---------------处理剩余结果---------------
+    log_.info('开始处理剩余结果other')
+    all_videos = df['videoid'].to_list()
+    if data_key in ['data7', ]:
+        all_filtered_videos = filter_video_status_app(all_videos)
+    else:
+        all_filtered_videos = filter_video_status(all_videos)
+    other_videos = [video for video in all_filtered_videos if video not in day_video_ids]
+    log_.info(f'过滤后剩余视频数量 count = {len(other_videos)}')
+    # 写入对应的redis
+    other_24h_recall_result = {}
+    json_data = []
+    for video_id in other_videos:
+        score = df[df['videoid'] == video_id]['score']
+        other_24h_recall_result[int(video_id)] = float(score)
+        json_data.append({'videoId': video_id, 'rovScore': float(score)})
+    # recall:item:score:24h:other:
+    other_h_24h_recall_key_name = \
+        f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H_OTHER}{data_key}:{rule_key}:{now_dt}:{now_h}"
+    log_.info("打印非地域24小时(剩余)redis key:{}".format(other_h_24h_recall_key_name))
+    if len(other_24h_recall_result) > 0:
+        log_.info(f"开始写入尾部数据:count = {len(other_24h_recall_result)}, key = {other_h_24h_recall_key_name}")
+        redis_helper.add_data_with_zset(key_name=other_h_24h_recall_key_name, data=other_24h_recall_result,
+                                        expire_time=2 * 3600)
+    else:
+        log_.info(f"无尾部数据,不写入。")
+
+    # 通知后端更新兜底视频数据
+    if notify_backend is True:
+        log_.info('json_data count = {}'.format(len(json_data[:5000])))
+        result = request_post(request_url=config_.NOTIFY_BACKEND_updateFallBackVideoList_URL,
+                              request_data={'videos': json_data[:5000]})
+        if result is None:
+            log_.error('notify backend updateFallBackVideoList fail!')
+        elif result['code'] == 0:
+            log_.info('notify backend updateFallBackVideoList success!')
+        else:
+            log_.error('notify backend updateFallBackVideoList fail!')
+
+    # 去重更新rov模型结果,并另存为redis中
+    # initial_data_dup = {}
+    # for video_id, score in initial_data:
+    #     if int(video_id) not in day_video_ids:
+    #         initial_data_dup[int(video_id)] = score
+    # log_.info(f"initial data dup count = {len(initial_data_dup)}")
+    #
+    # initial_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_DUP_24H}{rule_key}.{now_dt}.{now_h}"
+    # if len(initial_data_dup) > 0:
+    #     redis_helper.add_data_with_zset(key_name=initial_key_name, data=initial_data_dup, expire_time=23 * 3600)
+
+
+def merge_df(df_left, df_right):
+    """
+    df按照videoid 合并,对应特征求和
+    :param df_left:
+    :param df_right:
+    :return:
+    """
+    df_merged = pd.merge(df_left, df_right, on=['videoid'], how='outer', suffixes=['_x', '_y'])
+    df_merged.fillna(0, inplace=True)
+    feature_list = ['videoid']
+    for feature in features:
+        if feature in ['apptype', 'videoid']:
+            continue
+        df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
+        feature_list.append(feature)
+    return df_merged[feature_list]
+
+
+def merge_df_with_score(df_left, df_right):
+    """
+    df 按照videoid合并,平台回流人数、回流人数、分数 分别求和
+    :param df_left:
+    :param df_right:
+    :return:
+    """
+    df_merged = pd.merge(df_left, df_right, on=['videoid'], how='outer', suffixes=['_x', '_y'])
+    df_merged.fillna(0, inplace=True)
+    feature_list = ['videoid', '回流人数', 'platform_return', 'score']
+    for feature in feature_list[1:]:
+        df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
+    return df_merged[feature_list]
+
+
+def rank_by_h(now_date, now_h, rule_params, project, table):
+    # 获取特征数据
+    feature_df = get_feature_data(now_date=now_date, now_h=now_h, project=project, table=table)
+    feature_df['apptype'] = feature_df['apptype'].astype(int)
+    # rank
+    data_params_item = rule_params.get('data_params')
+    rule_params_item = rule_params.get('rule_params')
+
+    for param in rule_params.get('params_list'):
+        score_df_list = []
+        notify_backend = param.get('notify_backend', False)
+        data_key = param.get('data')
+        data_param = data_params_item.get(data_key)
+        rule_key = param.get('rule')
+        rule_param = rule_params_item.get(rule_key)
+        merge_func = rule_param.get('merge_func', 1)
+        log_.info("数据采用:{},统计采用{}.".format(data_key, rule_key))
+        log_.info("具体的规则是:{}.".format(rule_param))
+
+        if merge_func == 2:
+            for apptype, weight in data_param.items():
+                df = feature_df[feature_df['apptype'] == apptype]
+                # 计算score
+                score_df = cal_score(df=df, param=rule_param)
+                score_df['score'] = score_df['score'] * weight
+                score_df_list.append(score_df)
+            # 分数合并
+            df_merged = reduce(merge_df_with_score, score_df_list)
+            # 更新平台回流比
+            df_merged['platform_return_rate'] = df_merged['platform_return'] / df_merged['回流人数']
+            video_rank_h(df=df_merged, now_date=now_date, now_h=now_h,
+                         rule_key=rule_key, param=rule_param, data_key=data_key,
+                         notify_backend=notify_backend)
+        else:
+            df_list = [feature_df[feature_df['apptype'] == apptype] for apptype, _ in data_param.items()]
+            df_merged = reduce(merge_df, df_list)
+            score_df = cal_score(df=df_merged, param=rule_param)
+            video_rank_h(df=score_df, now_date=now_date, now_h=now_h,
+                         rule_key=rule_key, param=rule_param, data_key=data_key,
+                         notify_backend=notify_backend)
+
+    #     # to-csv
+    #     score_filename = f"score_by24h_{key}_{datetime.strftime(now_date, '%Y%m%d%H')}.csv"
+    #     score_df.to_csv(f'./data/{score_filename}')
+    #     # to-logs
+    #     log_.info({"date": datetime.strftime(now_date, '%Y%m%d%H'),
+    #                "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_BY_24H,
+    #                "rule_key": key,
+    #                # "score_df": score_df[['videoid', 'score']]
+    #                })
+
+
+def h_rank_bottom(now_date, now_h, rule_params):
+    """未按时更新数据,用模型召回数据作为当前的数据"""
+    redis_helper = RedisHelper()
+    if now_h == 0:
+        redis_dt = datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')
+        redis_h = 23
+    else:
+        redis_dt = datetime.strftime(now_date, '%Y%m%d')
+        redis_h = now_h - 1
+    key_prefix_list = [config_.RECALL_KEY_NAME_PREFIX_BY_24H, config_.RECALL_KEY_NAME_PREFIX_BY_24H_OTHER]
+
+    for param in rule_params.get('params_list'):
+        data_key = param.get('data')
+        rule_key = param.get('rule')
+        log_.info(f"data_key = {data_key}, rule_key = {rule_key}")
+        for key_prefix in key_prefix_list:
+            key_name = f"{key_prefix}{data_key}:{rule_key}:{redis_dt}:{redis_h}"
+            initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
+            if initial_data is None:
+                initial_data = []
+            final_data = dict()
+            for video_id, score in initial_data:
+                final_data[video_id] = score
+            # 存入对应的redis
+            final_key_name = \
+                f"{key_prefix}{data_key}:{rule_key}:{datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+            if len(final_data) > 0:
+                redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=2 * 3600)
+
+
+
+def h_timer_check():
+    try:
+        project = config_.PROJECT_24H_APP_TYPE
+        table = config_.TABLE_24H_APP_TYPE
+        rule_params = RULE_PARAMS
+        now_date = datetime.today()
+        log_.info(f"开始执行: {datetime.strftime(now_date, '%Y%m%d%H')}")
+        now_min = datetime.now().minute
+        now_h = datetime.now().hour
+        # 查看当前天级更新的数据是否已准备好
+        h_data_count = h_data_check(project=project, table=table, now_date=now_date, now_h=now_h)
+        if now_h == 23 or now_h < 8:
+            log_.info("当前时间{}小时,使用bottom的data,开始。".format(now_h))
+            h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params)
+            log_.info("----------当前时间{}小时,使用bottom的data,完成----------".format(now_h))
+        elif h_data_count > 0:
+            log_.info('上游数据表查询数据条数 h_data_count = {},开始计算。'.format(h_data_count))
+            rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params, project=project, table=table)
+            log_.info("数据2----------正常完成----------")
+        elif now_min > 40:
+            log_.info('当前分钟超过40,预计执行无法完成,使用 bottom data!')
+            h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params)
+            log_.info('----------当前分钟超过40,使用bottom的data,完成----------')
+        else:
+            # 数据没准备好,1分钟后重新检查
+            log_.info("上游数据未就绪,等待...")
+            Timer(60, h_timer_check).start()
+
+    except Exception as e:
+        log_.error(f"不区分地域24h数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
+        send_msg_to_feishu(
+            webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
+            key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
+            msg_text=f"rov-offline{config_.ENV_TEXT} - 不区分地域24h数据更新失败\n"
+                     f"exception: {e}\n"
+                     f"traceback: {traceback.format_exc()}"
+        )
+
+
+if __name__ == '__main__':
+    log_.info("文件alg_recsys_recall_24h_noregion.py:「24小时无地域」 开始执行")
+    h_timer_check()

+ 455 - 0
alg_recsys_recall_24h_region.py

@@ -0,0 +1,455 @@
+# -*- coding: utf-8 -*-
+import multiprocessing
+import traceback
+import gevent
+import datetime
+import pandas as pd
+import math
+from functools import reduce
+from odps import ODPS
+from threading import Timer, Thread
+from utils import RedisHelper, get_data_from_odps, filter_video_status, check_table_partition_exits, \
+    filter_video_status_app, send_msg_to_feishu
+from config import set_config
+from log import Log
+
+# os.environ['NUMEXPR_MAX_THREADS'] = '16'
+
+config_, _ = set_config()
+log_ = Log()
+
+region_code = config_.REGION_CODE
+
+
+RULE_PARAMS = {
+    'rule_params': {
+        'rule66': {'view_type': 'video-show', 'return_count': 21, 'score_rule': 0, 'platform_return_rate': 0.001},
+    },
+    'data_params': config_.DATA_PARAMS,
+    'params_list': [
+        {'data': 'data66', 'rule': 'rule66'},
+    ]
+}
+
+features = [
+    'apptype',
+    'code',  # 省份编码
+    'videoid',
+    'lastday_preview',  # 昨日预曝光人数
+    'lastday_view',  # 昨日曝光人数
+    'lastday_play',  # 昨日播放人数
+    'lastday_share',  # 昨日分享人数
+    'lastday_return',  # 昨日回流人数
+    'lastday_preview_total',  # 昨日预曝光次数
+    'lastday_view_total',  # 昨日曝光次数
+    'lastday_play_total',  # 昨日播放次数
+    'lastday_share_total',  # 昨日分享次数
+    'platform_return',
+    'platform_preview',
+    'platform_preview_total',
+    'platform_show',
+    'platform_show_total',
+    'platform_view',
+    'platform_view_total',
+]
+
+
+def get_rov_redis_key(now_date):
+    """获取rov模型结果存放key"""
+    redis_helper = RedisHelper()
+    now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
+    key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
+    if not redis_helper.key_exists(key_name=key_name):
+        pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
+        key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
+    return key_name
+
+
+def data_check(project, table, now_date):
+    """检查数据是否准备好"""
+    odps = ODPS(
+        access_id=config_.ODPS_CONFIG['ACCESSID'],
+        secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
+        project=project,
+        endpoint=config_.ODPS_CONFIG['ENDPOINT'],
+        connect_timeout=3000,
+        read_timeout=500000,
+        pool_maxsize=1000,
+        pool_connections=1000
+    )
+
+    try:
+        dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
+        check_res = check_table_partition_exits(date=dt, project=project, table=table)
+        if check_res:
+            sql = f'select * from {project}.{table} where dt = {dt}'
+            with odps.execute_sql(sql=sql).open_reader() as reader:
+                data_count = reader.count
+        else:
+            data_count = 0
+    except Exception as e:
+        data_count = 0
+    return data_count
+
+
+def get_feature_data(project, table, now_date):
+    """获取特征数据"""
+    dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
+    # dt = '2022041310'
+    records = get_data_from_odps(date=dt, project=project, table=table)
+    feature_data = []
+    for record in records:
+        item = {}
+        for feature_name in features:
+            item[feature_name] = record[feature_name]
+        feature_data.append(item)
+    feature_df = pd.DataFrame(feature_data)
+    return feature_df
+
+
+def cal_score(df, param):
+    """
+    计算score
+    :param df: 特征数据
+    :param param:
+    :return:
+    """
+    # score计算公式: sharerate*backrate*logback*ctr
+    # sharerate = lastday_share/(lastday_play+1000)
+    # backrate = lastday_return/(lastday_share+10)
+    # ctr = lastday_play/(lastday_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
+    # score = sharerate * backrate * LOG(lastday_return+1) * K2
+
+    df = df.fillna(0)
+    df['share_rate'] = df['lastday_share'] / (df['lastday_play'] + 1000)
+    df['back_rate'] = df['lastday_return'] / (df['lastday_share'] + 10)
+    df['log_back'] = (df['lastday_return'] + 1).apply(math.log)
+    if param.get('view_type', None) == 'video-show':
+        df['ctr'] = df['lastday_play'] / (df['platform_show'] + 1000)
+    else:
+        df['ctr'] = df['lastday_play'] / (df['lastday_preview'] + 1000)
+    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
+    df['platform_return_rate'] = df['platform_return'] / df['lastday_return']
+
+    df['score1'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
+
+    click_score_rate = param.get('click_score_rate', None)
+    back_score_rate = param.get('click_score_rate', None)
+    if click_score_rate is not None:
+        df['score'] = (1 - click_score_rate) * df['score1'] + click_score_rate * df['K2']
+    elif back_score_rate is not None:
+        df['score'] = (1 - back_score_rate) * df['score1'] + back_score_rate * df['back_rate']
+    else:
+        df['score'] = df['score1']
+
+    df = df.sort_values(by=['score'], ascending=False)
+    return df
+
+
+def video_rank(df, now_date, now_h, rule_key, param, region, data_key):
+    """
+    获取符合进入召回源条件的视频
+    :param df:
+    :param now_date:
+    :param now_h:
+    :param rule_key: 小时级数据进入条件
+    :param param: 小时级数据进入条件参数
+    :param region: 所属地域
+    :return:
+    """
+    redis_helper = RedisHelper()
+    # 获取符合进入召回源条件的视频
+    return_count = param.get('return_count', 1)
+    score_value = param.get('score_rule', 0)
+    platform_return_rate = param.get('platform_return_rate', 0)
+    h_recall_df = df[(df['lastday_return'] >= return_count) & (df['score'] >= score_value)
+                     & (df['platform_return_rate'] >= platform_return_rate)]
+    # videoid重复时,保留分值高
+    h_recall_df = h_recall_df.sort_values(by=['score'], ascending=False)
+    h_recall_df = h_recall_df.drop_duplicates(subset=['videoid'], keep='first')
+    h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
+    h_recall_videos = h_recall_df['videoid'].to_list()
+    log_.info(f"各种规则过滤后,一共有多少个视频 = {len(h_recall_videos)}")
+    # 视频状态过滤
+    if data_key in ['data7', ]:
+        filtered_videos = filter_video_status_app(h_recall_videos)
+    else:
+        filtered_videos = filter_video_status(h_recall_videos)
+    log_.info(f"视频状态-过滤后,一共有多少个视频 = {len(filtered_videos)}")
+
+    # 写入对应的redis
+    h_video_ids = []
+    day_recall_result = {}
+    for video_id in filtered_videos:
+        score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
+        day_recall_result[int(video_id)] = float(score)
+        h_video_ids.append(int(video_id))
+    day_recall_key_name = \
+        f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H}{region}:{data_key}:{rule_key}:" \
+        f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+    log_.info("打印地域24小时的某个地域{},redis key:{}".format(region, day_recall_key_name))
+    if len(day_recall_result) > 0:
+        log_.info(f"开始写入头部数据:count = {len(day_recall_result)}, key = {day_recall_key_name}")
+        redis_helper.add_data_with_zset(key_name=day_recall_key_name, data=day_recall_result, expire_time=2 * 3600)
+    else:
+        log_.info(f"无数据,不写入。")
+        # 清空线上过滤应用列表
+        # redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER_24H}{region}.{app_type}.{data_key}.{rule_key}")
+
+    # 与其他召回视频池去重,存入对应的redis
+    # dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, region=region)
+
+
+def merge_df(df_left, df_right):
+    """
+    df按照videoid, code 合并,对应特征求和
+    :param df_left:
+    :param df_right:
+    :return:
+    """
+    df_merged = pd.merge(df_left, df_right, on=['videoid', 'code'], how='outer', suffixes=['_x', '_y'])
+    df_merged.fillna(0, inplace=True)
+    feature_list = ['videoid', 'code']
+    for feature in features:
+        if feature in ['apptype', 'videoid', 'code']:
+            continue
+        df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
+        feature_list.append(feature)
+    return df_merged[feature_list]
+
+
+def merge_df_with_score(df_left, df_right):
+    """
+    df 按照[videoid, code]合并,平台回流人数、回流人数、分数 分别求和
+    :param df_left:
+    :param df_right:
+    :return:
+    """
+    df_merged = pd.merge(df_left, df_right, on=['videoid', 'code'], how='outer', suffixes=['_x', '_y'])
+    df_merged.fillna(0, inplace=True)
+    feature_list = ['videoid', 'code', 'lastday_return', 'platform_return', 'score']
+    for feature in feature_list[2:]:
+        df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
+    return df_merged[feature_list]
+
+
+def process_with_region(region, df_merged, data_key, rule_key, rule_param, now_date, now_h):
+    log_.info(f"多协程的region = {region} 开始执行")
+    region_df = df_merged[df_merged['code'] == region]
+    log_.info(f'该区域region = {region}, 下有多少数据量 = {len(region_df)}')
+    score_df = cal_score(df=region_df, param=rule_param)
+    video_rank(df=score_df, now_date=now_date, now_h=now_h, region=region,
+               rule_key=rule_key, param=rule_param, data_key=data_key)
+    log_.info(f"多协程的region = {region} 完成执行")
+
+
+def process_with_region2(region, df_merged, data_key, rule_key, rule_param, now_date, now_h):
+    log_.info(f"region = {region} start...")
+    region_score_df = df_merged[df_merged['code'] == region]
+    log_.info(f'region = {region}, region_score_df count = {len(region_score_df)}')
+    video_rank(df=region_score_df, now_date=now_date, now_h=now_h, region=region,
+               rule_key=rule_key, param=rule_param, data_key=data_key)
+    log_.info(f"region = {region} end!")
+
+
+def process_with_app_type(app_type, params, region_code_list, feature_df, now_date, now_h):
+    log_.info(f"app_type = {app_type} start...")
+    data_params_item = params.get('data_params')
+    rule_params_item = params.get('rule_params')
+    for param in params.get('params_list'):
+        data_key = param.get('data')
+        data_param = data_params_item.get(data_key)
+        log_.info(f"data_key = {data_key}, data_param = {data_param}")
+        df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
+        df_merged = reduce(merge_df, df_list)
+
+        rule_key = param.get('rule')
+        rule_param = rule_params_item.get(rule_key)
+        log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
+        task_list = [
+            gevent.spawn(process_with_region, region, df_merged, app_type, data_key, rule_key, rule_param,
+                         now_date, now_h)
+            for region in region_code_list
+        ]
+        gevent.joinall(task_list)
+    log_.info(f"app_type = {app_type} end!")
+
+
+def process_with_param(param, data_params_item, rule_params_item, region_code_list, feature_df, now_date, now_h):
+    data_key = param.get('data')
+    data_param = data_params_item.get(data_key)
+    rule_key = param.get('rule')
+    rule_param = rule_params_item.get(rule_key)
+    merge_func = rule_param.get('merge_func', None)
+    log_.info("数据采用:{},统计采用{}.".format(data_key, rule_key))
+    log_.info("具体的规则是:{}.".format(rule_param))
+
+    if merge_func == 2:
+        score_df_list = []
+        for apptype, weight in data_param.items():
+            df = feature_df[feature_df['apptype'] == apptype]
+            # 计算score
+            score_df = cal_score(df=df, param=rule_param)
+            score_df['score'] = score_df['score'] * weight
+            score_df_list.append(score_df)
+        # 分数合并
+        df_merged = reduce(merge_df_with_score, score_df_list)
+        # 更新平台回流比
+        df_merged['platform_return_rate'] = df_merged['platform_return'] / df_merged['lastday_return']
+        task_list = [
+            gevent.spawn(process_with_region2, region, df_merged, data_key, rule_key, rule_param, now_date, now_h)
+            for region in region_code_list
+        ]
+    else:
+        df_list = [feature_df[feature_df['apptype'] == apptype] for apptype, _ in data_param.items()]
+        df_merged = reduce(merge_df, df_list)
+        task_list = [
+            gevent.spawn(process_with_region, region, df_merged, data_key, rule_key, rule_param, now_date, now_h)
+            for region in region_code_list
+        ]
+
+    gevent.joinall(task_list)
+    log_.info(f"多进程的 param = {param} 完成执行!")
+
+
+def rank_by_24h(project, table, now_date, now_h, rule_params, region_code_list):
+    # 获取特征数据
+    feature_df = get_feature_data(project=project, table=table, now_date=now_date)
+    feature_df['apptype'] = feature_df['apptype'].astype(int)
+    # rank
+    data_params_item = rule_params.get('data_params')
+    rule_params_item = rule_params.get('rule_params')
+    params_list = rule_params.get('params_list')
+    pool = multiprocessing.Pool(processes=len(params_list))
+    for param in params_list:
+        pool.apply_async(
+            func=process_with_param,
+            args=(param, data_params_item, rule_params_item, region_code_list, feature_df, now_date, now_h)
+        )
+    pool.close()
+    pool.join()
+
+    """
+    pool = multiprocessing.Pool(processes=len(config_.APP_TYPE))
+    for app_type, params in rule_params.items():
+        pool.apply_async(func=process_with_app_type,
+                         args=(app_type, params, region_code_list, feature_df, now_date, now_h))
+    pool.close()
+    pool.join()
+    """
+
+
+def dup_to_redis(h_video_ids, now_date, now_h, rule_key, region):
+    """将地域分组小时级数据与其他召回视频池去重,存入对应的redis"""
+    redis_helper = RedisHelper()
+
+    # ##### 去重小程序天级更新结果,并另存为redis中
+    day_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_DAY}rule2.{datetime.datetime.strftime(now_date, '%Y%m%d')}"
+    if redis_helper.key_exists(key_name=day_key_name):
+        day_data = redis_helper.get_all_data_from_zset(key_name=day_key_name, with_scores=True)
+        log_.info(f'day data count = {len(day_data)}')
+        day_dup = {}
+        for video_id, score in day_data:
+            if int(video_id) not in h_video_ids:
+                day_dup[int(video_id)] = score
+                h_video_ids.append(int(video_id))
+        log_.info(f"day data dup count = {len(day_dup)}")
+        day_dup_key_name = \
+            f"{config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_DAY_24H}{region}.{rule_key}." \
+            f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
+        if len(day_dup) > 0:
+            redis_helper.add_data_with_zset(key_name=day_dup_key_name, data=day_dup, expire_time=23 * 3600)
+
+    # ##### 去重小程序模型更新结果,并另存为redis中
+    model_key_name = get_rov_redis_key(now_date=now_date)
+    model_data = redis_helper.get_all_data_from_zset(key_name=model_key_name, with_scores=True)
+    log_.info(f'model data count = {len(model_data)}')
+    model_data_dup = {}
+    for video_id, score in model_data:
+        if int(video_id) not in h_video_ids:
+            model_data_dup[int(video_id)] = score
+            h_video_ids.append(int(video_id))
+    log_.info(f"model data dup count = {len(model_data_dup)}")
+    model_data_dup_key_name = \
+        f"{config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_24H}{region}.{rule_key}." \
+        f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
+    if len(model_data_dup) > 0:
+        redis_helper.add_data_with_zset(key_name=model_data_dup_key_name, data=model_data_dup, expire_time=23 * 3600)
+
+
+def h_rank_bottom(now_date, now_h, rule_params, region_code_list):
+    """未按时更新数据,用上一小时结果作为当前小时的数据"""
+    redis_helper = RedisHelper()
+    if now_h == 0:
+        redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
+        redis_h = 23
+    else:
+        redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
+        redis_h = now_h - 1
+
+    # 以上一小时的地域分组数据作为当前小时的数据
+    key_prefix = config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H
+    for param in rule_params.get('params_list'):
+        data_key = param.get('data')
+        rule_key = param.get('rule')
+        log_.info(f"data_key = {data_key}, rule_key = {rule_key}")
+        for region in region_code_list:
+            log_.info(f"region = {region}")
+            key_name = f"{key_prefix}{region}:{data_key}:{rule_key}:{redis_dt}:{redis_h}"
+            initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
+            if initial_data is None:
+                initial_data = []
+            final_data = dict()
+            h_video_ids = []
+            for video_id, score in initial_data:
+                final_data[video_id] = score
+                h_video_ids.append(int(video_id))
+            # 存入对应的redis
+            final_key_name = \
+                f"{key_prefix}{region}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+            if len(final_data) > 0:
+                redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=2 * 3600)
+
+
+
+
+def h_timer_check():
+    try:
+        rule_params = RULE_PARAMS
+        project = config_.PROJECT_REGION_24H_APP_TYPE
+        table = config_.TABLE_REGION_24H_APP_TYPE
+        region_code_list = [code for region, code in region_code.items() if code != '-1']
+        now_date = datetime.datetime.today()
+        now_h = datetime.datetime.now().hour
+        now_min = datetime.datetime.now().minute
+        log_.info(f"开始执行: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
+        # 查看当天更新的数据是否已准备好
+        h_data_count = data_check(project=project, table=table, now_date=now_date)
+        if h_data_count > 0:
+            log_.info('上游数据表查询数据条数 h_data_count = {},开始计算。'.format(h_data_count))
+            rank_by_24h(now_date=now_date, now_h=now_h, rule_params=rule_params,
+                        project=project, table=table, region_code_list=region_code_list)
+            log_.info("数据3----------正常完成----------")
+        elif now_min > 40:
+            log_.info('当前分钟超过40,预计执行无法完成,使用 bottom data!')
+            h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list)
+            log_.info('----------当前分钟超过40,使用bottom的data,完成----------')
+        else:
+            # 数据没准备好,1分钟后重新检查
+            log_.info("上游数据未就绪,等待...")
+            Timer(60, h_timer_check).start()
+
+    except Exception as e:
+        log_.error(f"地域分组24h数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
+        send_msg_to_feishu(
+            webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
+            key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
+            msg_text=f"rov-offline{config_.ENV_TEXT} - 地域分组24h数据更新失败\n"
+                     f"exception: {e}\n"
+                     f"traceback: {traceback.format_exc()}"
+        )
+
+
+if __name__ == '__main__':
+    log_.info("文件alg_recsys_recall_24h_region.py:「24小时地域」 开始执行")
+    h_timer_check()

+ 171 - 0
alg_recsys_recall_4h_region_trend.py

@@ -0,0 +1,171 @@
+# -*- coding: utf-8 -*-
+import traceback
+import datetime
+from odps import ODPS
+from threading import Timer
+from utils import RedisHelper, get_data_from_odps, send_msg_to_feishu
+from config import set_config
+from log import Log
+from queue import Queue
+from tqdm import tqdm
+import threading
+import sys
+
+config_, _ = set_config()
+log_ = Log()
+
+
+
+region_name2code: dict = config_.REGION_CODE
+# region_name2code["中国"] = "-1"
+redis_helper = RedisHelper()
+
+def worker(queue, executor):
+    while True:
+        row = queue.get()
+        if row is None:  # 结束信号
+            queue.task_done()
+            break
+        executor(row)
+        queue.task_done()
+def records_process_for_list(records, executor, max_size=50, num_workers=10):
+    # 创建一个线程安全的队列
+    queue = Queue(maxsize=max_size)  # 可以调整 maxsize 以控制内存使用
+    # 设置线程池大小
+    num_workers = num_workers
+    # 启动工作线程
+    threads = []
+    for _ in range(num_workers):
+        t = threading.Thread(target=worker, args=(queue, executor))
+        t.start()
+        threads.append(t)
+    # 读取数据并放入队列
+    for row in tqdm(records):
+        queue.put(row)
+    # 发送结束信号
+    for _ in range(num_workers):
+        queue.put(None)
+    # 等待所有任务完成
+    queue.join()
+    # 等待所有工作线程结束
+    for t in threads:
+        t.join()
+
+def check_data(project, table, partition) -> int:
+    """检查数据是否准备好,输出数据条数"""
+    odps = ODPS(
+        access_id=config_.ODPS_CONFIG['ACCESSID'],
+        secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
+        project=project,
+        endpoint=config_.ODPS_CONFIG['ENDPOINT'],
+        connect_timeout=3000,
+        read_timeout=500000,
+        pool_maxsize=1000,
+        pool_connections=1000
+    )
+    try:
+        t = odps.get_table(name=table)
+        log_.info(f"检查分区是否存在-【 dt={partition} 】")
+        check_res = t.exist_partition(partition_spec=f'dt={partition}')
+        if check_res:
+            sql = f'select * from {project}.{table} where dt = {partition}'
+            log_.info(sql)
+            with odps.execute_sql(sql=sql).open_reader() as reader:
+                data_count = reader.count
+        else:
+            log_.info("表{}分区{}不存在".format(table, partition))
+            data_count = 0
+    except Exception as e:
+        log_.error("table:{},partition:{} no data. return data_count=0:{}".format(table, partition, e))
+        data_count = 0
+    return data_count
+
+def get_table_data(project, table, partition):
+    """获取全部分区数据"""
+
+    records = get_data_from_odps(date=partition, project=project, table=table)
+
+    data = []
+    for record in records:
+        tmp = {}
+        for col_name in ["region", "videoid_array_sum", "videoid_array_avg"]:
+            tmp[col_name] = record[col_name]
+        data.append(tmp)
+    return data
+
+def region_match(region_cn: str, region_name2code: dict):
+    for r in region_name2code:
+        if region_cn == r or region_cn in r or (
+                region_cn.endswith("省") and region_cn.split("省")[0] in r
+        ):
+            return region_name2code[r]
+    return None
+
+def process_and_store(row):
+    region_code = row["region_code"]
+    videoid_array_sum = row["videoid_array_sum"]
+    videoid_array_avg = row["videoid_array_avg"]
+    key1 = "alg_recsys_recall_4h_region_trend_sum_" + region_code
+    key2 = "alg_recsys_recall_4h_region_trend_avg_" + region_code
+    expire_time = 24 * 3600 * 4
+    redis_helper.set_data_to_redis(key1, videoid_array_sum, expire_time)
+    redis_helper.set_data_to_redis(key2, videoid_array_avg, expire_time)
+    log_.info("trend-sum写入数据key={},value={}".format(key1, videoid_array_sum))
+    log_.info("trend-avg写入数据key={},value={}".format(key2, videoid_array_avg))
+
+"""
+    数据表链接:https://dmc-cn-hangzhou.data.aliyun.com/dm/odps-table/odps.loghubods.alg_recsys_recall_strategy_trend/
+"""
+def h_timer_check():
+    try:
+        log_.info(f"开始执行: {datetime.datetime.strftime(datetime.datetime.today(), '%Y%m%d%H')}")
+        try:
+            date = sys.argv[1]
+            hour = sys.argv[2]
+        except Exception as e:
+            now_date = datetime.datetime.today()
+            date = datetime.datetime.strftime(now_date, '%Y%m%d%H')
+            hour = datetime.datetime.now().hour
+            log_.info("没有读取到参数,采用系统时间,报错info:{}".format(e))
+        partition = str(date) + str(hour)
+        log_.info("打印partition={}".format(partition))
+        #1 判断数据表是否生产完成
+        project = "loghubods"
+        table = "alg_recsys_recall_strategy_trend"
+        table_data_cnt = check_data(project, table, partition)
+        if table_data_cnt == 0:
+            log_.info("上游数据{}未就绪{},等待...".format(table, partition))
+            Timer(60, h_timer_check).start()
+        else:
+            log_.info("上游数据就绪,count={},开始读取数据表".format(table_data_cnt))
+            #2 读取数据表+区域过滤
+            data = get_table_data(project, table, partition)
+            data_new = []
+            for one in data:
+                region_code = region_match(one["region"], region_name2code)
+                if region_code:
+                    one["region_code"] = region_code
+                    data_new.append(one)
+                else:
+                    log_.info("{}被过滤掉了".format(one["region"]))
+
+            log_.info("数据处理完成,数据数量={},所有的地域:{}".format(len(data_new), ",".join([
+                one["region"] for one in data_new
+            ])))
+            log_.info("开始处理和写入redis")
+            #3 写入redis
+            records_process_for_list(data_new, process_and_store, max_size=10, num_workers=5)
+
+    except Exception as e:
+        log_.error(f"4小时地域-趋势统计数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
+        send_msg_to_feishu(
+            webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
+            key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
+            msg_text=f"rov-offline{config_.ENV_TEXT} - 4小时地域-趋势统计数据更新失败\n"
+                     f"exception: {e}\n"
+                     f"traceback: {traceback.format_exc()}"
+        )
+
+if __name__ == '__main__':
+    log_.info("文件alg_recsys_recall_4h_region_trend.py:「4小时地域-趋势统计」 开始执行")
+    h_timer_check()

+ 21 - 0
alg_recsys_recall_4h_region_trend_task.sh

@@ -0,0 +1,21 @@
+source /etc/profile
+echo $ROV_OFFLINE_ENV
+if [ ! -d "my_logs" ]; then
+    # 如果文件夹不存在,则创建文件夹
+    mkdir my_logs
+fi
+cur_time="`date +%Y%m%d`"
+cur_h="`date +%H`"
+echo "开始执行时间:{$(date "+%Y-%m-%d %H:%M:%S")}"
+
+if [[ $ROV_OFFLINE_ENV == 'test' ]]; then
+#  cd /root/zhangbo/rov-offline
+  /root/anaconda3/bin/python alg_recsys_recall_4h_region_trend.py $cur_time $cur_h
+  echo "结束执行时间:{$(date "+%Y-%m-%d %H:%M:%S")}"
+  echo "all done"
+elif [[ $ROV_OFFLINE_ENV == 'pro' ]]; then
+#  cd /root/zhangbo/rov-offline
+  /root/anaconda3/bin/python alg_recsys_recall_4h_region_trend.py $cur_time $cur_h
+  echo "结束执行时间:{$(date "+%Y-%m-%d %H:%M:%S")}"
+  echo "all done"
+fi

+ 428 - 0
alg_recsys_recall_aftermerge.py

@@ -0,0 +1,428 @@
+# -*- coding: utf-8 -*-
+import multiprocessing
+import sys
+import traceback
+import gevent
+import datetime
+import pandas as pd
+import math
+from functools import reduce
+from odps import ODPS
+from threading import Timer, Thread
+from utils import MysqlHelper, RedisHelper, get_data_from_odps, filter_video_status, filter_shield_video, \
+    check_table_partition_exits, filter_video_status_app, send_msg_to_feishu, filter_political_videos
+from config import set_config
+from log import Log
+from check_video_limit_distribute import update_limit_video_score
+
+# os.environ['NUMEXPR_MAX_THREADS'] = '16'
+
+config_, _ = set_config()
+log_ = Log()
+
+region_code = config_.REGION_CODE
+
+
+RULE_PARAMS = {
+    'rule_params': {
+        'rule66': {
+            'view_type': 'video-show-region', 'platform_return_rate': 0.001,
+            'region_24h_rule_key': 'rule66', '24h_rule_key': 'rule66'
+        },
+        'rule67': {
+          'view_type': 'video-show-region', 'platform_return_rate': 0.001,
+        'region_24h_rule_key': 'rule66', '24h_rule_key': 'rule66', 'h_rule_key': 'rule66'
+         },
+         'rule68': {
+             'view_type': 'video-show-region', 'platform_return_rate': 0.001,
+             'region_24h_rule_key': 'rule66', '24h_rule_key': 'rule66',
+             'score_func': 'back_rate_exponential_weighting1'
+         },
+
+    },
+    'data_params': config_.DATA_PARAMS,
+    'params_list': [
+        # 532
+        # {'data': 'data66', 'rule': 'rule66'},  # 523-> 523 & 518
+        {'data': 'data66', 'rule': 'rule67'},  # 523->510
+        # {'data': 'data66', 'rule': 'rule68'},  # 523->514
+        # {'data': 'data66', 'rule': 'rule69'},  # 523->518
+    ],
+}
+
+features = [
+    'apptype',
+    'code',
+    'videoid',
+    'lastonehour_preview',  # 过去1小时预曝光人数 - 区分地域
+    'lastonehour_view',  # 过去1小时曝光人数 - 区分地域
+    'lastonehour_play',  # 过去1小时播放人数 - 区分地域
+    'lastonehour_share',  # 过去1小时分享人数 - 区分地域
+    'lastonehour_return',  # 过去1小时分享,过去1小时回流人数 - 区分地域
+    'lastonehour_preview_total',  # 过去1小时预曝光次数 - 区分地域
+    'lastonehour_view_total',  # 过去1小时曝光次数 - 区分地域
+    'lastonehour_play_total',  # 过去1小时播放次数 - 区分地域
+    'lastonehour_share_total',  # 过去1小时分享次数 - 区分地域
+    'platform_return',
+    'lastonehour_show',  # 不区分地域
+    'lastonehour_show_region',  # 地域分组
+    'lasttwohour_share',  # h-2小时分享人数
+    'lasttwohour_return_now',  # h-2分享,过去1小时回流人数
+    'lasttwohour_return',  # h-2分享,h-2回流人数
+    'lastthreehour_share',  # h-3小时分享人数
+    'lastthreehour_return_now',  # h-3分享,过去1小时回流人数
+    'lastthreehour_return',  # h-3分享,h-3回流人数
+
+    'lastonehour_return_new',  # 过去1小时分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'lasttwohour_return_now_new',  # h-2分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'lasttwohour_return_new',  # h-2分享,h-2回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'lastthreehour_return_now_new',  # h-3分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'lastthreehour_return_new',  # h-3分享,h-3回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+    'platform_return_new',  # 平台分发回流(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
+]
+
+def h_data_check(project, table, now_date):
+    """检查数据是否准备好"""
+    odps = ODPS(
+        access_id=config_.ODPS_CONFIG['ACCESSID'],
+        secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
+        project=project,
+        endpoint=config_.ODPS_CONFIG['ENDPOINT'],
+        connect_timeout=3000,
+        read_timeout=500000,
+        pool_maxsize=1000,
+        pool_connections=1000
+    )
+
+    try:
+        dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
+        check_res = check_table_partition_exits(date=dt, project=project, table=table)
+        if check_res:
+            sql = f'select * from {project}.{table} where dt = {dt}'
+            with odps.execute_sql(sql=sql).open_reader() as reader:
+                data_count = reader.count
+        else:
+            data_count = 0
+    except Exception as e:
+        data_count = 0
+    return data_count
+
+def video_rank(df, now_date, now_h, rule_key, param, region, data_key, rule_rank_h_flag,
+               add_videos_with_pre_h=False, hour_count=0):
+
+    shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
+    political_filter = param.get('political_filter', None)
+    h_recall_key_name = \
+        f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H}{region}:{data_key}:{rule_key}:" \
+        f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+    redis_helper = RedisHelper()
+    if redis_helper.key_exists(key_name=h_recall_key_name):
+        initial_data = redis_helper.get_all_data_from_zset(key_name=h_recall_key_name, with_scores=True)
+        h_video_ids = [int(video_id) for video_id, _ in initial_data]
+    else:
+        h_video_ids = []
+        log_.info("地域小时级别没有数据,下游不会过滤。")
+
+    h_rule_key = param.get('h_rule_key', None)
+    region_24h_rule_key = param.get('region_24h_rule_key', 'rule1')
+    by_24h_rule_key = param.get('24h_rule_key', None)
+    by_48h_rule_key = param.get('48h_rule_key', None)
+    dup_remove = param.get('dup_remove', True)
+    # 与其他召回视频池去重,存入对应的redis
+    dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, h_rule_key=h_rule_key,
+                 region_24h_rule_key=region_24h_rule_key, by_24h_rule_key=by_24h_rule_key,
+                 by_48h_rule_key=by_48h_rule_key, region=region, data_key=data_key,
+                 rule_rank_h_flag=rule_rank_h_flag, political_filter=political_filter,
+                 shield_config=shield_config, dup_remove=dup_remove)
+
+
+def dup_data(h_video_ids, initial_key_name, dup_key_name, region, political_filter, shield_config, dup_remove):
+    redis_helper = RedisHelper()
+    if redis_helper.key_exists(key_name=initial_key_name):
+        initial_data = redis_helper.get_all_data_from_zset(key_name=initial_key_name, with_scores=True)
+        # 屏蔽视频过滤
+        initial_video_ids = [int(video_id) for video_id, _ in initial_data]
+
+        dup_data = {}
+        # 视频去重逻辑
+        if dup_remove is True:
+            for video_id, score in initial_data:
+                if int(video_id) not in h_video_ids and int(video_id) in initial_video_ids:
+                    dup_data[int(video_id)] = score
+                    h_video_ids.append(int(video_id))
+        else:
+            for video_id, score in initial_data:
+                if int(video_id) in initial_video_ids:
+                    dup_data[int(video_id)] = score
+
+        if len(dup_data) > 0:
+            redis_helper.add_data_with_zset(key_name=dup_key_name, data=dup_data, expire_time=2 * 24 * 3600)
+            # 限流视频score调整
+            update_limit_video_score(initial_videos=dup_data, key_name=dup_key_name)
+    return h_video_ids
+
+
+def dup_to_redis(h_video_ids, now_date, now_h, rule_key, h_rule_key, region_24h_rule_key, by_24h_rule_key, by_48h_rule_key,
+                 region, data_key, rule_rank_h_flag, political_filter, shield_config, dup_remove):
+    """将地域分组小时级数据与其他召回视频池去重,存入对应的redis"""
+
+    if h_rule_key is not None:
+        h_key_name = \
+            f"{config_.RECALL_KEY_NAME_PREFIX_BY_H_H}{data_key}:{h_rule_key}:" \
+            f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+        h_dup_key_name = \
+            f"{config_.RECALL_KEY_NAME_PREFIX_DUP_H_H}{region}:{data_key}:{rule_key}:" \
+            f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+        log_.info("开始去重【1小时 无地域,写入key的前缀是:{}".format(h_dup_key_name))
+        h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_key_name,
+                               dup_key_name=h_dup_key_name, region=region, political_filter=political_filter,
+                               shield_config=shield_config, dup_remove=dup_remove)
+
+    # ##### 去重更新地域分组小时级24h列表,并另存为redis中
+    region_24h_key_name = \
+        f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H}{region}:{data_key}:{region_24h_rule_key}:" \
+        f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+    region_24h_dup_key_name = \
+        f"{config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
+        f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+    log_.info("开始去重【24小时 地域】,写入key的前缀是:{}".format(region_24h_dup_key_name))
+    h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=region_24h_key_name,
+                           dup_key_name=region_24h_dup_key_name, region=region, political_filter=political_filter,
+                           shield_config=shield_config, dup_remove=dup_remove)
+
+
+    # ##### 去重小程序相对24h更新结果,并另存为redis中
+    h_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}{data_key}:{by_24h_rule_key}:" \
+                     f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+    h_24h_dup_key_name = \
+        f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
+        f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+    log_.info("开始去重【24小时 无地域】,写入key的前缀是:{}".format(region_24h_dup_key_name))
+    h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_24h_key_name,
+                           dup_key_name=h_24h_dup_key_name, region=region, political_filter=political_filter,
+                           shield_config=shield_config, dup_remove=dup_remove)
+
+    # ##### 去重小程序相对24h 筛选后剩余数据 更新结果,并另存为redis中
+    other_h_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H_OTHER}{data_key}:" \
+                           f"{by_24h_rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+    other_h_24h_dup_key_name = \
+        f"{config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
+        f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+    log_.info("开始去重【24小时 无地域 other】,写入key的前缀是:{}".format(other_h_24h_dup_key_name))
+    h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=other_h_24h_key_name,
+                           dup_key_name=other_h_24h_dup_key_name, region=region, political_filter=political_filter,
+                           shield_config=shield_config, dup_remove=dup_remove)
+
+
+
+def process_with_region(region, df_merged, data_key, rule_key, rule_param, now_date, now_h,
+                        rule_rank_h_flag, add_videos_with_pre_h, hour_count):
+    log_.info(f"多协程的region = {region} 开始执行")
+    video_rank(df=None, now_date=now_date, now_h=now_h, rule_key=rule_key, param=rule_param,
+               region=region, data_key=data_key, rule_rank_h_flag=rule_rank_h_flag,
+               add_videos_with_pre_h=add_videos_with_pre_h, hour_count=hour_count)
+    log_.info(f"多协程的region = {region} 完成执行")
+
+
+
+def copy_data_for_city(region, city_code, data_key, rule_key, now_date, now_h, shield_config):
+    """copy 对应数据到城市对应redis,并做相应屏蔽视频过滤"""
+    log_.info(f"city_code = {city_code} start ...")
+    redis_helper = RedisHelper()
+    key_prefix_list = [
+        config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H,  # 地域小时级
+        config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_24H_H,  # 地域相对24h
+        config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_24H_H,  # 不区分地域相对24h
+        config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_24H_H,  # 不区分地域相对24h筛选后
+        config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_H,  # rov大列表
+    ]
+    for key_prefix in key_prefix_list:
+        region_key = f"{key_prefix}{region}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+        city_key = f"{key_prefix}{city_code}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+        if not redis_helper.key_exists(key_name=region_key):
+            continue
+        region_data = redis_helper.get_all_data_from_zset(key_name=region_key, with_scores=True)
+        if not region_data:
+            continue
+        # 屏蔽视频过滤
+        region_video_ids = [int(video_id) for video_id, _ in region_data]
+        shield_key_name_list = shield_config.get(city_code, None)
+        # shield_key_name_list = config_.SHIELD_CONFIG.get(city_code, None)
+        if shield_key_name_list is not None:
+            filtered_video_ids = filter_shield_video(video_ids=region_video_ids,
+                                                     shield_key_name_list=shield_key_name_list)
+        else:
+            filtered_video_ids = region_video_ids
+        city_data = {}
+        for video_id, score in region_data:
+            if int(video_id) in filtered_video_ids:
+                city_data[int(video_id)] = score
+
+        if len(city_data) > 0:
+            redis_helper.add_data_with_zset(key_name=city_key, data=city_data, expire_time=2 * 24 * 3600)
+
+    log_.info(f"city_code = {city_code} end!")
+
+
+def process_with_param(param, data_params_item, rule_params_item, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag):
+    data_key = param.get('data')
+    data_param = data_params_item.get(data_key)
+    rule_key = param.get('rule')
+    rule_param = rule_params_item.get(rule_key)
+    merge_func = rule_param.get('merge_func', None)
+    log_.info("数据采用:{},统计采用{}.".format(data_key, rule_key))
+    log_.info("具体的规则是:{}.".format(rule_param))
+    # 是否在地域小时级数据中增加打捞的优质视频
+    add_videos_with_pre_h = rule_param.get('add_videos_with_pre_h', False)
+    hour_count = rule_param.get('hour_count', 0)
+
+    if merge_func == 2:
+        pass
+    else:
+        task_list = [
+            gevent.spawn(process_with_region,
+                         region, None, data_key, rule_key, rule_param, now_date, now_h, rule_rank_h_flag,
+                         add_videos_with_pre_h, hour_count)
+            for region in region_code_list
+        ]
+
+    gevent.joinall(task_list)
+
+
+    log_.info(f"多进程的 param = {param} 完成执行!")
+
+
+def rank_by_h(project, table, now_date, now_h, rule_params, region_code_list, rule_rank_h_flag):
+    # 获取特征数据
+    data_params_item = rule_params.get('data_params')
+    rule_params_item = rule_params.get('rule_params')
+    params_list = rule_params.get('params_list')
+    pool = multiprocessing.Pool(processes=len(params_list))
+    for param in params_list:
+        pool.apply_async(
+            func=process_with_param,
+            args=(param, data_params_item, rule_params_item, region_code_list, None, now_date, now_h, rule_rank_h_flag)
+        )
+    pool.close()
+    pool.join()
+
+
+
+def h_bottom_process(param, rule_params_item, region_code_list, key_prefix, redis_dt, redis_h,
+                     now_date, now_h, rule_rank_h_flag):
+    redis_helper = RedisHelper()
+    data_key = param.get('data')
+    rule_key = param.get('rule')
+    rule_param = rule_params_item.get(rule_key)
+    log_.info(f"data_key = {data_key}, rule_key = {rule_key}, rule_param = {rule_param}")
+    h_rule_key = rule_param.get('h_rule_key', None)
+    region_24h_rule_key = rule_param.get('region_24h_rule_key', 'rule1')
+    by_24h_rule_key = rule_param.get('24h_rule_key', None)
+    by_48h_rule_key = rule_param.get('48h_rule_key', None)
+    # 涉政视频过滤
+    political_filter = param.get('political_filter', None)
+    # 屏蔽视频过滤
+    shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
+    dup_remove = param.get('dup_remove', True)
+    for region in region_code_list:
+        log_.info(f"region = {region}")
+        key_name = f"{key_prefix}{region}:{data_key}:{rule_key}:{redis_dt}:{redis_h}"
+        initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
+        if initial_data is None:
+            initial_data = []
+        final_data = dict()
+        h_video_ids = []
+        for video_id, score in initial_data:
+            final_data[video_id] = score
+            h_video_ids.append(int(video_id))
+        # 存入对应的redis
+        final_key_name = \
+            f"{key_prefix}{region}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+        if len(final_data) > 0:
+            redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=2 * 24 * 3600)
+        # 与其他召回视频池去重,存入对应的redis
+        dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, h_rule_key=h_rule_key,
+                     region_24h_rule_key=region_24h_rule_key, region=region,
+                     data_key=data_key, by_24h_rule_key=by_24h_rule_key,
+                     by_48h_rule_key=by_48h_rule_key, rule_rank_h_flag=rule_rank_h_flag,
+                     political_filter=political_filter, shield_config=shield_config, dup_remove=dup_remove)
+    # 特殊城市视频数据准备
+    for region, city_list in config_.REGION_CITY_MAPPING.items():
+        t = [
+            gevent.spawn(
+                copy_data_for_city,
+                region, city_code, data_key, rule_key, now_date, now_h, shield_config
+            )
+            for city_code in city_list
+        ]
+        gevent.joinall(t)
+
+
+def h_rank_bottom(now_date, now_h, rule_params, region_code_list, rule_rank_h_flag):
+    """未按时更新数据,用上一小时结果作为当前小时的数据"""
+    # 获取rov模型结果
+    # redis_helper = RedisHelper()
+    if now_h == 0:
+        redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
+        redis_h = 23
+    else:
+        redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
+        redis_h = now_h - 1
+
+    # 以上一小时的地域分组数据作为当前小时的数据
+    key_prefix = config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H
+    rule_params_item = rule_params.get('rule_params')
+    params_list = rule_params.get('params_list')
+    pool = multiprocessing.Pool(processes=len(params_list))
+    for param in params_list:
+        pool.apply_async(
+            func=h_bottom_process,
+            args=(param, rule_params_item, region_code_list, key_prefix, redis_dt, redis_h, now_date, now_h, rule_rank_h_flag)
+        )
+    pool.close()
+    pool.join()
+
+
+def h_timer_check():
+    try:
+        rule_rank_h_flag = "24h"
+        rule_params = RULE_PARAMS
+        project = config_.PROJECT_REGION_APP_TYPE
+        table = config_.TABLE_REGION_APP_TYPE
+        region_code_list = [code for region, code in region_code.items()]
+        now_date = datetime.datetime.today()
+        log_.info(f"开始执行: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
+        now_h = datetime.datetime.now().hour
+        now_min = datetime.datetime.now().minute
+        if now_h == 0:
+            log_.info("当前时间{}小时,使用bottom的data合并,开始。".format(now_h))
+            h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list,
+                          rule_rank_h_flag=rule_rank_h_flag)
+            log_.info("----------当前时间{}小时,使用bottom的data,完成----------".format(now_h))
+            return
+        # 查看当前小时更新的数据是否已准备好
+        if now_min < 45:
+            log_.info('开始正常合并')
+            # 数据准备好,进行更新
+            rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params,
+                      project=project, table=table, region_code_list=region_code_list, rule_rank_h_flag=rule_rank_h_flag)
+            log_.info("合并5----------正常完成----------")
+        else:
+            log_.info('当前合并分钟超过45,预计执行无法完成,使用 bottom data!')
+            h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list,
+                          rule_rank_h_flag=rule_rank_h_flag)
+            log_.info('----------当前分钟超过45,使用bottom的data,完成----------')
+    except Exception as e:
+        log_.error(f"地域分组小时级数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
+        send_msg_to_feishu(
+            webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
+            key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
+            msg_text=f"rov-offline{config_.ENV_TEXT} - 地域分组小时级数据更新失败\n"
+                     f"exception: {e}\n"
+                     f"traceback: {traceback.format_exc()}"
+        )
+
+
+if __name__ == '__main__':
+    log_.info("文件alg_recsys_recall_aftermerge.py:「去重合并」 开始执行")
+    h_timer_check()

+ 35 - 0
alg_recsys_recall_hour_region_task.sh

@@ -0,0 +1,35 @@
+source /etc/profile
+echo $ROV_OFFLINE_ENV
+if [ ! -d "my_logs" ]; then
+    # 如果文件夹不存在,则创建文件夹
+    mkdir my_logs
+fi
+cur_time="`date +%Y%m%d`"
+cur_h="`date +%H`"
+echo "开始执行时间:{$cur_time}-{$cur_h}"
+
+if [[ $ROV_OFFLINE_ENV == 'test' ]]; then
+  cd /root/zhangbo/rov-offline
+  /root/anaconda3/bin/python alg_recsys_recall_1h_region.py &
+  /root/anaconda3/bin/python alg_recsys_recall_24h_noregion.py &
+  /root/anaconda3/bin/python alg_recsys_recall_24h_region.py &
+  /root/anaconda3/bin/python alg_recsys_recall_1h_noregion.py
+  wait
+  echo "并行执行时间:{$(date "+%Y-%m-%d %H:%M:%S")}"
+  /root/anaconda3/bin/python alg_recsys_recall_aftermerge.py
+  echo "结束执行时间:{$(date "+%Y-%m-%d %H:%M:%S")}"
+  echo "all done"
+elif [[ $ROV_OFFLINE_ENV == 'pro' ]]; then
+  cd /root/zhangbo/rov-offline
+  /root/anaconda3/bin/python alg_recsys_recall_1h_region.py &
+  /root/anaconda3/bin/python alg_recsys_recall_24h_noregion.py &
+  /root/anaconda3/bin/python alg_recsys_recall_24h_region.py &
+  /root/anaconda3/bin/python alg_recsys_recall_1h_noregion.py
+  wait
+  echo "并行执行时间:{$(date "+%Y-%m-%d %H:%M:%S")}"
+  /root/anaconda3/bin/python alg_recsys_recall_aftermerge.py
+  echo "结束执行时间:{$(date "+%Y-%m-%d %H:%M:%S")}"
+  echo "all done"
+fi
+
+#10 * * * * cd /zhangbo/rov-offline && /bin/sh alg_recsys_recall_hour_region_task.sh > my_logs/task_$(date +\%Y-\%m-\%d_\%H).log 2>&1

+ 118 - 0
alg_recsys_recall_shield_videos.py

@@ -0,0 +1,118 @@
+# -*- coding: utf-8 -*-
+import traceback
+from config import set_config
+from log import Log
+from utils import execute_sql_from_odps
+from db_helper import RedisHelper
+import datetime
+import json
+config_, _ = set_config()
+log_ = Log()
+redis_helper = RedisHelper()
+
+table = "loghubods.special_area_recommend_limit"
+
+RISK_SHIELD_FILTER_VIDEO_V1_STR = "RISK_SHIELD_FILTER_VIDEO_V1_STR"
+
+def get_special_area_limit_videos():
+    """获取特殊地域屏蔽视频并存入redis"""
+    try:
+        # 获取特殊地域屏蔽视频
+        sql = "SELECT videoid FROM {}.{};".format(config_.PROJECT_SPECIAL_AREA_LIMIT,
+                                                  config_.TABLE_SPECIAL_AREA_LIMIT)
+        print("sql:"+sql)
+        records = execute_sql_from_odps(project=config_.PROJECT_SPECIAL_AREA_LIMIT, sql=sql)
+        video_id_list = []
+        with records.open_reader() as reader:
+            for record in reader:
+                video_id = int(record['videoid'])
+                video_id_list.append(video_id)
+        log_.info(f"special area limit videos count = {len(video_id_list)}")
+        log_.info("videos = {}".format(",".join([str(i) for i in video_id_list])))
+        # 存入redis
+        if len(video_id_list) > 0:
+            value = ",".join([str(i) for i in video_id_list])
+            redis_helper.set_data_to_redis(key_name=RISK_SHIELD_FILTER_VIDEO_V1_STR, value=value,
+                                           expire_time=3600*24 * 7)
+            # redis_helper.del_keys(key_name=config_.SPECIAL_AREA_LIMIT_KEY_NAME)
+            # redis_helper.add_data_with_set(key_name=config_.SPECIAL_AREA_LIMIT_KEY_NAME, values=video_id_list,
+            #                                expire_time=25 * 3600)
+    except Exception as e:
+        log_.error(str(e) + str(traceback.format_exc()))
+
+def main():
+    log_.info("开始执行:" + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
+
+    # -----------------风险过滤需求------------------------------------------------
+    get_special_area_limit_videos()
+    expire_time = 3600*24 * 30
+
+    key = "RISK_SHIELD_FILTER_RULE_V1_JSON"
+    value = "{\"2\": []}"
+    redis_helper.set_data_to_redis(key, value, expire_time)
+    value_get = redis_helper.get_data_from_redis(key_name=key)
+    print('key:', key, type(key))
+    print('value_get:', value_get, type(value_get))
+
+    key = "RISK_SHIELD_FILTER_EXPANSION_FACTOR_INT"
+    value = "10"
+    redis_helper.set_data_to_redis(key, value, expire_time)
+    value_get = redis_helper.get_data_from_redis(key_name=key)
+    print('key:', key, type(key))
+    print('value_get:', value_get, type(value_get))
+
+    key = "RISK_SHIELD_FILTER_FLAG_BOOL"
+    value = "True"
+    redis_helper.set_data_to_redis(key, value, expire_time)
+    value_get = redis_helper.get_data_from_redis(key_name=key)
+    print('key:', key, type(key))
+    print('value_get:', value_get, type(value_get))
+
+
+
+    # -----------------多样性需求的过滤------------------------------------------------
+    expire_time = 3600 * 24 * 30
+
+    key = "TAGS_FILTER_FLAG_BOOL"
+    value = "True"
+    redis_helper.set_data_to_redis(key, value, expire_time)
+    value_get = redis_helper.get_data_from_redis(key_name=key)
+    print('key:', key, type(key))
+    print('value_get:', value_get, type(value_get))
+
+    key = "TAGS_FILTER_RULE_V1_JSON"
+    with open('alg_recsys_recall_tags_videos.json', 'r') as f:
+        json_read = json.load(f)
+        value = json.dumps(json_read, ensure_ascii=False)
+    redis_helper.set_data_to_redis(key, value, expire_time)
+    value_get = redis_helper.get_data_from_redis(key_name=key)
+    print('key:', key, type(key))
+    print('value_get:', value_get, type(value_get))
+
+    key = "TAGS_FILTER_RULE_V2_JSON"
+    with open('alg_recsys_recall_tags_videos_v2.json', 'r') as f:
+        json_read = json.load(f)
+        value = json.dumps(json_read, ensure_ascii=False)
+    redis_helper.set_data_to_redis(key, value, expire_time)
+    value_get = redis_helper.get_data_from_redis(key_name=key)
+    print('key:', key, type(key))
+    print('value_get:', value_get, type(value_get))
+
+    key = "TAGS_FILTER_RULE_V3_JSON"
+    with open('alg_recsys_recall_tags_videos_v3.json', 'r') as f:
+        json_read = json.load(f)
+        value = json.dumps(json_read, ensure_ascii=False)
+    redis_helper.set_data_to_redis(key, value, expire_time)
+    value_get = redis_helper.get_data_from_redis(key_name=key)
+    print('key:', key, type(key))
+    print('value_get:', value_get, type(value_get))
+
+    log_.info("完成执行:" + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
+
+if __name__ == '__main__':
+    main()
+
+
+
+# cd /root/zhangbo/rov-offline
+# python alg_recsys_recall_shield_videos.py

+ 22 - 0
alg_recsys_recall_shield_videos_task.sh

@@ -0,0 +1,22 @@
+source /etc/profile
+echo $ROV_OFFLINE_ENV
+if [ ! -d "logs_dir" ]; then
+    # 如果文件夹不存在,则创建文件夹
+    mkdir logs_dir
+fi
+cur_time="`date +%Y%m%d`"
+cur_h="`date +%H`"
+echo "开始执行时间:{$cur_time}-{$cur_h}"
+
+if [[ $ROV_OFFLINE_ENV == 'test' ]]; then
+  cd /root/zhangbo/rov-offline
+  /root/anaconda3/bin/python alg_recsys_recall_shield_videos.py
+  echo "all done"
+elif [[ $ROV_OFFLINE_ENV == 'pro' ]]; then
+  cd /root/zhangbo/rov-offline
+  /root/anaconda3/bin/python alg_recsys_recall_shield_videos.py
+  echo "all done"
+fi
+cur_time="`date +%Y%m%d`"
+cur_h="`date +%H`"
+echo "结束执行时间:{$cur_time}-{$cur_h}"

+ 118 - 0
alg_recsys_recall_tags_videos.json

@@ -0,0 +1,118 @@
+{
+  "早上好": {
+    "start": 0,
+    "end": 9,
+    "3": {
+      "density": 1
+    },
+    "5": {
+      "density": 1
+    }
+  },
+  "中午好": {
+    "start": 11,
+    "end": 13,
+    "3": {
+      "density": 1
+    },
+    "5": {
+      "density": 1
+    }
+  },
+  "下午好": {
+    "start": 15,
+    "end": 16,
+    "3": {
+      "density": 1
+    },
+    "5": {
+      "density": 1
+    }
+  },
+  "晚上好": {
+    "start": 18,
+    "end": 20,
+    "3": {
+      "density": 1
+    },
+    "5": {
+      "density": 1
+    }
+  },
+  "晚安": {
+    "start": 21,
+    "end": 23,
+    "3": {
+      "density": 1
+    },
+    "5": {
+      "density": 1
+    }
+  },
+  "祝福": {
+    "start": 0,
+    "end": 23,
+    "3": {
+      "density": 2
+    },
+    "5": {
+      "density": 2
+    }
+  },
+  "P1高风险": {
+    "start": 0,
+    "end": 23
+  },
+  "P0高风险": {
+    "start": 0,
+    "end": 23
+  },
+  "元旦": {
+    "3": {
+      "density": 2
+    },
+    "5": {
+      "density": 2
+    }
+  },
+  "腊八节": {
+    "3": {
+      "density": 2
+    },
+    "5": {
+      "density": 2
+    }
+  },
+  "小年": {
+    "3": {
+      "density": 2
+    },
+    "5": {
+      "density": 2
+    }
+  },
+  "除夕": {
+    "3": {
+      "density": 2
+    },
+    "5": {
+      "density": 2
+    }
+  },
+  "春节": {
+    "3": {
+      "density": 2
+    },
+    "5": {
+      "density": 2
+    }
+  },
+  "情人节": {
+    "3": {
+      "density": 2
+    },
+    "5": {
+      "density": 2
+    }
+  }
+}

+ 134 - 0
alg_recsys_recall_tags_videos.py

@@ -0,0 +1,134 @@
+# -*- coding: utf-8 -*-
+import traceback
+from config import set_config
+from log import Log
+from utils import execute_sql_from_odps
+from db_helper import RedisHelper
+import datetime
+from alg_recsys_recall_4h_region_trend import records_process_for_list
+config_, _ = set_config()
+log_ = Log()
+redis_helper = RedisHelper()
+
+PROJECT = "videoods"
+TABLE = "videoods.dim_video"
+REDIS_PREFIX = "alg_recsys_video_tags_"
+
+TAG_SET = ['元旦','腊八节','小年','小年','除夕','春节','情人节','元宵节','龙抬头','妇女节','劳动节','母亲节',
+    '儿童节','端午节','父亲节','建党节','七七事变','建军节','七夕节','中元节','中秋节','毛主席逝世',
+    '国庆节','重阳节','感恩节','公祭日','平安夜','圣诞节','毛主席诞辰','小寒','大寒','立春','雨水',
+    '惊蛰','春分','清明','谷雨','立夏','小满','芒种','夏至','小暑','大暑','立秋','处暑','白露','秋分',
+    '寒露','霜降','立冬','小雪','大雪','冬至','早上好','中午好','下午好','晚上好','晚安','祝福',
+    'P1高风险','P0高风险'
+]
+
+def get_video_tags():
+    """获取视频的tag"""
+    try:
+        sql = "SELECT  videoid \
+,tags \
+FROM    {} \
+LATERAL VIEW EXPLODE(SPLIT(tags,',')) exploded AS exploded_value \
+WHERE   tags IS NOT NULL \
+AND     ( \
+exploded_value = '元旦' \
+OR      exploded_value = '腊八节' \
+OR      exploded_value = '小年' \
+OR      exploded_value = '除夕' \
+OR      exploded_value = '春节' \
+OR      exploded_value = '情人节' \
+OR      exploded_value = '元宵节' \
+OR      exploded_value = '龙抬头' \
+OR      exploded_value = '妇女节' \
+OR      exploded_value = '劳动节' \
+OR      exploded_value = '母亲节' \
+OR      exploded_value = '儿童节' \
+OR      exploded_value = '端午节' \
+OR      exploded_value = '父亲节' \
+OR      exploded_value = '建党节' \
+OR      exploded_value = '七七事变' \
+OR      exploded_value = '建军节' \
+OR      exploded_value = '七夕节' \
+OR      exploded_value = '中元节' \
+OR      exploded_value = '中秋节' \
+OR      exploded_value = '毛主席逝世' \
+OR      exploded_value = '国庆节' \
+OR      exploded_value = '重阳节' \
+OR      exploded_value = '感恩节' \
+OR      exploded_value = '公祭日' \
+OR      exploded_value = '平安夜' \
+OR      exploded_value = '圣诞节' \
+OR      exploded_value = '毛主席诞辰' \
+OR      exploded_value = '小寒' \
+OR      exploded_value = '大寒' \
+OR      exploded_value = '立春' \
+OR      exploded_value = '雨水' \
+OR      exploded_value = '惊蛰' \
+OR      exploded_value = '春分' \
+OR      exploded_value = '清明' \
+OR      exploded_value = '谷雨' \
+OR      exploded_value = '立夏' \
+OR      exploded_value = '小满' \
+OR      exploded_value = '芒种' \
+OR      exploded_value = '夏至' \
+OR      exploded_value = '小暑' \
+OR      exploded_value = '大暑' \
+OR      exploded_value = '立秋' \
+OR      exploded_value = '处暑' \
+OR      exploded_value = '白露' \
+OR      exploded_value = '秋分' \
+OR      exploded_value = '寒露' \
+OR      exploded_value = '霜降' \
+OR      exploded_value = '立冬' \
+OR      exploded_value = '小雪' \
+OR      exploded_value = '大雪' \
+OR      exploded_value = '冬至' \
+OR      exploded_value = '早上好' \
+OR      exploded_value = '中午好' \
+OR      exploded_value = '下午好' \
+OR      exploded_value = '晚上好' \
+OR      exploded_value = '晚安' \
+OR      exploded_value = '祝福' \
+OR      exploded_value = 'P1高风险' \
+OR      exploded_value = 'P0高风险' \
+)".format(TABLE)
+        print("sql:"+sql)
+        records = execute_sql_from_odps(project=PROJECT, sql=sql)
+        video_tags_list = []
+        with records.open_reader() as reader:
+            for record in reader:
+                video_id = int(record['videoid'])
+                tags = ",".join([i for i in str(record['tags']).split(",") if i in TAG_SET])
+                d = {}
+                d["video_id"] = video_id
+                d["tags"] = tags
+                video_tags_list.append(d)
+                log_.info("{}:{}".format(video_id, tags))
+        log_.info("video的数据量:{}".format(len(video_tags_list)))
+        records_process_for_list(video_tags_list, process_and_store, max_size=50, num_workers=8)
+        log_.info("video的数据量:{}".format(len(video_tags_list)))
+
+    except Exception as e:
+        log_.error(str(e) + str(traceback.format_exc()))
+
+def process_and_store(row):
+    video_id = row["video_id"]
+    tags = row["tags"]
+    key = REDIS_PREFIX + str(video_id)
+    expire_time = 24 * 3600 * 2
+    redis_helper.set_data_to_redis(key, tags, expire_time)
+    log_.info("video-tags写入数据key={},value={}".format(key, tags))
+
+def main():
+    log_.info("开始执行:" + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
+    get_video_tags()
+    log_.info("完成执行:" + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
+
+if __name__ == '__main__':
+    main()
+
+
+
+
+# cd /root/zhangbo/rov-offline
+# python alg_recsys_recall_shield_videos.py

+ 22 - 0
alg_recsys_recall_tags_videos_task.sh

@@ -0,0 +1,22 @@
+source /etc/profile
+echo $ROV_OFFLINE_ENV
+if [ ! -d "my_logs_tags" ]; then
+    # 如果文件夹不存在,则创建文件夹
+    mkdir my_logs_tags
+fi
+cur_time="`date +%Y%m%d`"
+cur_h="`date +%H`"
+echo "开始执行时间:{$cur_time}-{$cur_h}"
+
+if [[ $ROV_OFFLINE_ENV == 'test' ]]; then
+  cd /root/zhangbo/rov-offline
+  /root/anaconda3/bin/python alg_recsys_recall_tags_videos.py
+  echo "all done"
+elif [[ $ROV_OFFLINE_ENV == 'pro' ]]; then
+  cd /root/zhangbo/rov-offline
+  /root/anaconda3/bin/python alg_recsys_recall_tags_videos.py
+  echo "all done"
+fi
+cur_time="`date +%Y%m%d`"
+cur_h="`date +%H`"
+echo "结束执行时间:{$cur_time}-{$cur_h}"

+ 19 - 0
alg_recsys_recall_tags_videos_v2.json

@@ -0,0 +1,19 @@
+{
+  "元旦": {
+    "3": {
+      "density": 2
+    },
+    "0": {
+      "density": 2
+    },
+    "4": {
+      "density": 2
+    },
+    "21": {
+      "density": 2
+    },
+    "6": {
+      "density": 2
+    }
+  }
+}

+ 19 - 0
alg_recsys_recall_tags_videos_v3.json

@@ -0,0 +1,19 @@
+{
+  "元旦": {
+    "3": {
+      "density": 1
+    },
+    "0": {
+      "density": 1
+    },
+    "4": {
+      "density": 1
+    },
+    "21": {
+      "density": 1
+    },
+    "6": {
+      "density": 1
+    }
+  }
+}

+ 1 - 0
check_video_limit_distribute.py

@@ -69,6 +69,7 @@ def update_limit_video_score(initial_videos, key_name):
     if len(limit_video_final_score) == 0:
         return
     redis_helper.add_data_with_zset(key_name=key_name, data=limit_video_final_score, expire_time=2 * 24 * 3600)
+    return limit_video_final_score
 
 
 def check_videos_distribute():

+ 5 - 103
config.py

@@ -267,37 +267,13 @@ class BaseConfig(object):
                       'view_type': 'preview', 'merge_func': 2},
             'rule66': {'cal_score_func': 2, 'return_count': 100, 'platform_return_rate': 0.001,
                       'view_type': 'preview'},
-            # # 无回流人群
-            # 'rule5': {'return_count': 100, 'platform_return_rate': 0.001,
-            #           'view_type': 'preview', 'click_score_rate': 0.7},
-            # 'rule7': {'return_count': 100, 'platform_return_rate': 0.001,
-            #           'view_type': 'preview', 'click_score_rate': 0.8},
-            # # 有回流人群
-            # 'rule6': {'return_count': 100, 'platform_return_rate': 0.001,
-            #           'view_type': 'preview', 'back_score_rate': 0.7},
-            # 'rule8': {'return_count': 100, 'platform_return_rate': 0.001,
-            #           'view_type': 'preview', 'back_score_rate': 0.8},
         },
         'data_params': DATA_PARAMS,
         'params_list': [
             {'data': 'data1', 'rule': 'rule3', 'notify_backend': True},
-            # {'data': 'data2', 'rule': 'rule3'},
             {'data': 'data2', 'rule': 'rule4'},
-            # {'data': 'data3', 'rule': 'rule4'},
-            # {'data': 'data4', 'rule': 'rule4'},
-            # {'data': 'data6', 'rule': 'rule4'},
             {'data': 'data7', 'rule': 'rule4'},
-            # {'data': 'data1', 'rule': 'rule5'},
-            # {'data': 'data1', 'rule': 'rule6'},
-            # {'data': 'data8', 'rule': 'rule4'},
-            # {'data': 'data9', 'rule': 'rule4'},
             {'data': 'data10', 'rule': 'rule4'},
-            # {'data': 'data11', 'rule': 'rule4'},
-            # {'data': 'data12', 'rule': 'rule4'},
-            # {'data': 'data13', 'rule': 'rule4'},
-            # # {'data': 'data14', 'rule': 'rule4'},
-            # {'data': 'data1', 'rule': 'rule7'},
-            # {'data': 'data1', 'rule': 'rule8'},
             {'data': 'videos5', 'rule': 'rule4'},  # [内容精选]
             {'data': 'data66', 'rule': 'rule66'},
         ]
@@ -312,45 +288,19 @@ class BaseConfig(object):
         'rule_params': {
             'rule2': {'view_type': 'video-show', 'return_count': 21, 'score_rule': 0,
                       'platform_return_rate': 0.001},
-            # 'rule3': {'view_type': 'preview', 'return_count': 21, 'score_rule': 0,
-            #           'platform_return_rate': 0.001},
             'rule4': {'view_type': 'video-show', 'return_count': 21, 'score_rule': 0,
                       'platform_return_rate': 0.001, 'merge_func': 2},
             'rule5': {'view_type': 'preview', 'return_count': 21, 'score_rule': 0,
                       'platform_return_rate': 0.001, 'merge_func': 2},
             'rule66': {'view_type': 'video-show', 'return_count': 21, 'score_rule': 0,
                       'platform_return_rate': 0.001},
-            # # 无回流人群
-            # 'rule6': {'view_type': 'video-show', 'return_count': 21, 'score_rule': 0,
-            #           'platform_return_rate': 0.001, 'click_score_rate': 0.7},
-            # 'rule8': {'view_type': 'video-show', 'return_count': 21, 'score_rule': 0,
-            #           'platform_return_rate': 0.001, 'click_score_rate': 0.8},
-            # # 有回流人群
-            # 'rule7': {'view_type': 'video-show', 'return_count': 21, 'score_rule': 0,
-            #           'platform_return_rate': 0.001, 'back_score_rate': 0.7},
-            # 'rule9': {'view_type': 'video-show', 'return_count': 21, 'score_rule': 0,
-            #           'platform_return_rate': 0.001, 'back_score_rate': 0.8},
         },
         'data_params': DATA_PARAMS,
         'params_list': [
             {'data': 'data1', 'rule': 'rule2'},
-            # {'data': 'data2', 'rule': 'rule2'},
             {'data': 'data2', 'rule': 'rule4'},
-            # {'data': 'data3', 'rule': 'rule4'},
-            # {'data': 'data4', 'rule': 'rule4'},
-            # {'data': 'data6', 'rule': 'rule4'},
             {'data': 'data7', 'rule': 'rule5'},
-            # {'data': 'data1', 'rule': 'rule6'},
-            # {'data': 'data1', 'rule': 'rule7'},
-            # {'data': 'data8', 'rule': 'rule4'},
-            # {'data': 'data9', 'rule': 'rule4'},
             {'data': 'data10', 'rule': 'rule4'},
-            # {'data': 'data11', 'rule': 'rule4'},
-            # {'data': 'data12', 'rule': 'rule4'},
-            # {'data': 'data13', 'rule': 'rule4'},
-            # {'data': 'data14', 'rule': 'rule4'},
-            # {'data': 'data1', 'rule': 'rule8'},
-            # {'data': 'data1', 'rule': 'rule9'},
             {'data': 'videos5', 'rule': 'rule4'},  # [内容精选]
             {'data': 'data66', 'rule': 'rule66'},
         ]
@@ -362,10 +312,6 @@ class BaseConfig(object):
     # 小时级规则参数
     RULE_PARAMS_H_APP_TYPE = {
         'rule_params': {
-            # score = sharerate * backrate * LOG(lastonehour_return + 1) * K2
-            # sharerate = lastonehour_share / (lastonehour_play + 1000)
-            # backrate = lastonehour_return / (lastonehour_share + 10)
-            # ctr = lastonehour_play / (lastonehour_show + 1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
             'rule1': {'view_type': 'video-show', 'platform_return_rate': 0.001, 'merge_func': 2},
         },
         'data_params': DATA_PARAMS,
@@ -381,9 +327,6 @@ class BaseConfig(object):
     # 地域分组小时级规则参数
     RULE_PARAMS_REGION_APP_TYPE = {
         'rule_params': {
-            # 'rule2': {'view_type': 'video-show', 'platform_return_rate': 0.001, 'region_24h_rule_key': 'rule2'},
-            # 'rule3': {'view_type': 'video-show-region', 'platform_return_rate': 0.001,
-            #           'region_24h_rule_key': 'rule2', '24h_rule_key': 'rule2'},
             'rule4': {'view_type': 'video-show-region', 'platform_return_rate': 0.001,
                       'region_24h_rule_key': 'rule2', '24h_rule_key': 'rule3'},
             # 涉政视频过滤
@@ -393,8 +336,6 @@ class BaseConfig(object):
             'rule4-2': {'view_type': 'video-show-region', 'platform_return_rate': 0.001,
                         'region_24h_rule_key': 'rule2', '24h_rule_key': 'rule3', 'shield_config': SHIELD_CONFIG2},
 
-            # 'rule6': {'view_type': 'preview', 'platform_return_rate': 0.001,
-            #           'region_24h_rule_key': 'rule3', '24h_rule_key': 'rule2'},
             'rule7': {'view_type': 'video-show-region', 'platform_return_rate': 0.001,
                       'region_24h_rule_key': 'rule4', '24h_rule_key': 'rule4', 'merge_func': 2},
             'rule7-1': {'view_type': 'video-show-region', 'platform_return_rate': 0.001,
@@ -402,21 +343,6 @@ class BaseConfig(object):
                         'political_filter': True},
             'rule8': {'view_type': 'preview', 'platform_return_rate': 0.001,
                       'region_24h_rule_key': 'rule5', '24h_rule_key': 'rule4', 'merge_func': 2},
-            # 'rule9': {'view_type': 'video-show-region', 'platform_return_rate': 0.001,
-            #           'region_24h_rule_key': 'rule2', '24h_rule_key': 'rule3', '30day_rule_key': 'rule1'},
-            # # 无回流人群
-            # 'rule10': {'view_type': 'video-show-region', 'platform_return_rate': 0.001,
-            #            'region_24h_rule_key': 'rule6', '24h_rule_key': 'rule5', 'click_score_rate': 0.7},
-            # 'rule13': {'view_type': 'video-show-region', 'platform_return_rate': 0.001,
-            #            'region_24h_rule_key': 'rule8', '24h_rule_key': 'rule7', 'click_score_rate': 0.8},
-            # # 有回流人群
-            # 'rule11': {'view_type': 'video-show-region', 'platform_return_rate': 0.001,
-            #            'region_24h_rule_key': 'rule7', '24h_rule_key': 'rule6', 'back_score_rate': 0.7},
-            # 'rule14': {'view_type': 'video-show-region', 'platform_return_rate': 0.001,
-            #            'region_24h_rule_key': 'rule9', '24h_rule_key': 'rule8', 'back_score_rate': 0.8},
-            # # 20点地域小时级列表中增加7点-19点地域小时级的优质视频
-            # 'rule12': {'view_type': 'video-show-region', 'platform_return_rate': 0.001,
-            #            'region_24h_rule_key': 'rule2', '24h_rule_key': 'rule3', 'add_videos_in_20h': True},
 
             # 地域小时级列表中增加 前6小时 地域小时级的优质视频
             'rule15': {'view_type': 'video-show-region', 'platform_return_rate': 0.001,
@@ -496,48 +422,24 @@ class BaseConfig(object):
                 'view_type': 'video-show-region', 'platform_return_rate': 0.001,
                 'region_24h_rule_key': 'rule66', '24h_rule_key': 'rule66'
             },
+            'rule68': {
+                'view_type': 'video-show-region', "return_count": 5,
+                'region_24h_rule_key': 'rule66', '24h_rule_key': 'rule66'
+            },
         },
         'data_params': DATA_PARAMS,
         'params_list': [
             {'data': 'data1', 'rule': 'rule4'},  # 095 vlog
             {'data': 'data1', 'rule': 'rule4-1'},  # 095-1
-            # {'data': 'data1', 'rule': 'rule4-2'},  # 262 特殊地域屏蔽危险视频
-            # {'data': 'data2', 'rule': 'rule4'},
             {'data': 'data2', 'rule': 'rule7-1'},  # 121 内容精选
-            # {'data': 'data3', 'rule': 'rule7'},
-            # {'data': 'data4', 'rule': 'rule7'},
-            # {'data': 'data6', 'rule': 'rule7'},
             {'data': 'data7', 'rule': 'rule8'},  # 票圈视频APP 10003.110156
-            # {'data': 'data1', 'rule': 'rule9'},
-            # {'data': 'data1', 'rule': 'rule10'},
-            # {'data': 'data1', 'rule': 'rule11'},
-            # {'data': 'data8', 'rule': 'rule7'},
-            # {'data': 'data9', 'rule': 'rule7'},
             {'data': 'data10', 'rule': 'rule7'},  # 144 票圈视频
-            # {'data': 'data11', 'rule': 'rule7'},
-            # {'data': 'data12', 'rule': 'rule7'},
-            # {'data': 'data13', 'rule': 'rule7'},
-            # {'data': 'data1', 'rule': 'rule12'},
-            # {'data': 'data14', 'rule': 'rule7'},  # 159
-            # {'data': 'data1', 'rule': 'rule13'},  # 161
-            # {'data': 'data1', 'rule': 'rule14'},  # 162
-            # {'data': 'data1', 'rule': 'rule15'},  # 200 vlog
-            # {'data': 'data1', 'rule': 'rule16'},  # 214 vlog
-            # {'data': 'data1', 'rule': 'rule17'},  # 215 vlog
-            # {'data': 'data1', 'rule': 'rule18'},  # 224 vlog
             {'data': 'videos5', 'rule': 'rule7-1'},  # 428 [内容精选]
-            # {'data': 'data1', 'rule': 'rule20'},  # 461 vlog 分值计算公式 增加h-2分享当前小时回流数据、h-3分享当前小时回流数据特征
-            # {'data': 'data1', 'rule': 'rule21'},  # 462 vlog 分值计算公式 增加[h-3,h-2]之间的回流留存特征
-            # {'data': 'data1', 'rule': 'rule22'},  # 463 vlog 分值计算公式 增加h-2分享当前小时回流/h-2分享、h-3分享当前小时回流/h-3分享 特征
-            # {'data': 'data1', 'rule': 'rule23'},  # 465 vlog 回流数据使用 分享限制地域,回流不限制地域 统计数据
-            # {'data': 'data1', 'rule': 'rule24'},  # 466 vlog 分值计算公式 增加[h-3,h-2]之间的回流留存特征 + 回流数据使用 分享限制地域,回流不限制地域 统计数据
-            # {'data': 'data10', 'rule': 'rule25'},  # 500
-            # {'data': 'data10', 'rule': 'rule26'},  # 501
             {'data': 'data10', 'rule': 'rule27'},  # 502
             {'data': 'data10', 'rule': 'rule28'},  # 503
-            # {'data': 'data10', 'rule': 'rule29'},  # 509
             {'data': 'data10', 'rule': 'rule30'},  # 510
             {'data': 'data66', 'rule': 'rule66'}, # 520
+            {'data': 'data66', 'rule': 'rule68'},
         ],
         'params_list_new': [
             # {'data': 'data10', 'rule': 'rule19'},  # 316 票圈视频 + 召回在线去重

+ 82 - 0
redis_test.py

@@ -0,0 +1,82 @@
+from utils import RedisHelper
+from config import set_config
+from log import Log
+import sys
+sys.path.append("zhangbo/")
+sys.path.append("/")
+config_, _ = set_config()
+log_ = Log()
+redis_helper = RedisHelper()
+
+
+if __name__ == '__main__':
+
+    key = "RISK_SHIELD_FILTER_RULE_V1_JSON"
+    value = "{\"0\": [\"110000\"]}"
+    redis_helper.set_data_to_redis(key, value, 7200)
+    value_get = redis_helper.get_data_from_redis(key_name=key)
+    print('key:', key, type(key))
+    print('value_get:', value_get, type(value_get))
+
+    # key = "RISK_SHIELD_FILTER_VIDEO_V1_STR"
+    # value = "7536230,1,2,3,4,5,6,7,8,9,10"
+    # redis_helper.set_data_to_redis(key, value, 7200)
+    # value_get = redis_helper.get_data_from_redis(key_name=key)
+    # print('key:', key, type(key))
+    # print('value_get:', value_get, type(value_get))
+
+
+    key = "RISK_SHIELD_FILTER_EXPANSION_FACTOR_INT"
+    value = "15"
+    redis_helper.set_data_to_redis(key, value, 7200)
+    value_get = redis_helper.get_data_from_redis(key_name=key)
+    print('key:', key, type(key))
+    print('value_get:', value_get, type(value_get))
+
+
+    key = "RISK_SHIELD_FILTER_FLAG_BOOL"
+    value = "True"
+    redis_helper.set_data_to_redis(key, value, 7200)
+    value_get = redis_helper.get_data_from_redis(key_name=key)
+    print('key:', key, type(key))
+    print('value_get:', value_get, type(value_get))
+
+    # redis_helper.del_keys(key_name=key)
+
+    # python zhangbo/redis_test.py
+
+
+    # dt = '20231203'
+    # data_key = 'test_lr_v1'
+    # key_name = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{data_key}:{dt}"
+    # redis_data = {
+    #     'yxh': 0.3,
+    #     'zb': 0.13213231231,
+    # }
+    # redis_data = {
+    #     'mz': 0.2,
+    #     'zb': 0.6666,
+    # }
+    # print(key_name)
+    # #redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
+    #
+    # print(redis_helper.get_score_with_value(key_name=key_name, value='zb'))
+    # print(redis_helper.get_score_with_value(key_name=key_name, value='mz'))
+    # print(redis_helper.get_score_with_value(key_name='ad:users:group:predict:share:rate:test_lr_v1:20231129', value='16537775'))
+    #
+    # model_key = 'ad_out_v1'
+    # KEY_NAME_PREFIX_AD_OUT_MODEL_CONFIG = 'ad:out:model:config:'
+    # abtest_id = '173'
+    # abtest_config_tag = 'u'
+    # config_key_prefix = f"{KEY_NAME_PREFIX_AD_OUT_MODEL_CONFIG}{model_key}:{abtest_id}:{abtest_config_tag}"
+    # threshold_key = f"{config_key_prefix}:threshold"
+    # use_mean_key = f"{config_key_prefix}:use_mean"
+    # threshold = redis_helper.get_data_from_redis(key_name=threshold_key)
+    # use_mean = redis_helper.get_data_from_redis(key_name=use_mean_key)
+    # print('threshold:', threshold, type(threshold))
+    # print('use_mean:', use_mean, type(use_mean))
+    # expire_time = 30 * 24 * 3600
+    # redis_helper.set_data_to_redis(threshold_key, 0.4, expire_time)
+    # redis_helper.set_data_to_redis(use_mean_key, 1, expire_time)
+    # print(threshold_key)
+    # print(use_mean_key)

+ 5 - 2
region_rule_rank_h_v2.py

@@ -601,8 +601,11 @@ def video_rank(df, now_date, now_h, rule_key, param, region, data_key, rule_rank
     return_count = param.get('return_count', 1)
     score_value = param.get('score_rule', 0)
     platform_return_rate = param.get('platform_return_rate', 0)
-    h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value)
-                     & (df['platform_return_rate'] >= platform_return_rate)]
+    h_recall_df = df[
+                        (df['lastonehour_return'] >= return_count) &
+                        (df['score'] >= score_value) &
+                        (df['platform_return_rate'] >= platform_return_rate)
+                     ]
 
     # videoid重复时,保留分值高
     h_recall_df = h_recall_df.sort_values(by=['score'], ascending=False)