|
@@ -81,7 +81,7 @@ def predict_video_share_rate(video_initial_df, dt, data_key, data_param, top10_a
|
|
|
video_df['video_ad_share_rate'] = \
|
|
|
video_df['sharerate_ad'] * float(ad_all_videos_share_rate) / video_df['sharerate_all']
|
|
|
video_df['video_ad_share_rate'].fillna(0, inplace=True)
|
|
|
- log_.info(f"video_df: {video_df}")
|
|
|
+ # log_.info(f"video_df: {video_df}")
|
|
|
video_df = video_df[video_df['video_ad_share_rate'] != 0]
|
|
|
log_.info(f"video_df filtered 0 length: {len(video_df)}")
|
|
|
# 结果写入redis
|
|
@@ -98,6 +98,7 @@ def predict_video_share_rate(video_initial_df, dt, data_key, data_param, top10_a
|
|
|
for abnormal_video_id in top10_abnormal_video_ids:
|
|
|
print(abnormal_video_id, group_ad_share_rate_mean, group_ad_share_rate_mean * abnormal_video_param)
|
|
|
redis_data[int(abnormal_video_id)] = group_ad_share_rate_mean * abnormal_video_param
|
|
|
+ log_.info(f"redis_data count: {len(redis_data)}")
|
|
|
if len(redis_data) > 0:
|
|
|
redis_helper = RedisHelper()
|
|
|
redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
|