|
@@ -176,7 +176,7 @@ def cal_score_initial_20240223(df, param):
|
|
|
df = df.sort_values(by=['score'], ascending=False)
|
|
|
return df
|
|
|
|
|
|
-def cal_score_initial(df, param):
|
|
|
+def cal_score_initial(df, param, now_h):
|
|
|
"""
|
|
|
计算score
|
|
|
:param df: 特征数据
|
|
@@ -190,13 +190,23 @@ def cal_score_initial(df, param):
|
|
|
# score = sharerate * backrate * LOG(lastonehour_return+1) * K2
|
|
|
|
|
|
df = df.fillna(0)
|
|
|
- df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
|
|
|
- df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
|
|
|
- df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
|
|
|
+ # zhangbo
|
|
|
+ if now_h in [1,2,3,4]:
|
|
|
+ df['log_back'] = (df['lastonehour_allreturn'] + 1).apply(math.log)
|
|
|
+ df['share_rate'] = (df['lastonehour_share'] + 1) / (df['lastonehour_play'] + 1000)
|
|
|
+ df['back_rate'] = (df['lastonehour_return'] + 1) / (df['lastonehour_share'] + 10)
|
|
|
+ else:
|
|
|
+ df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
|
|
|
+ df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
|
|
|
+ df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
|
|
|
+
|
|
|
if param.get('view_type', None) == 'video-show':
|
|
|
df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
|
|
|
elif param.get('view_type', None) == 'video-show-region':
|
|
|
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
|
|
|
+ if now_h in [1, 2, 3, 4]:
|
|
|
+ df['ctr'] = (df['lastonehour_play'] + 1) / (df['lastonehour_show_region'] + 1000)
|
|
|
+ else:
|
|
|
+ df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
|
|
|
else:
|
|
|
df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
|
|
|
df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
|
|
@@ -524,7 +534,7 @@ def cal_score_with_back_rate_by_rank_weighting(df, param):
|
|
|
|
|
|
|
|
|
|
|
|
-def cal_score(df, param):
|
|
|
+def cal_score(df, param, now_h):
|
|
|
if param.get('return_data', None) == 'share_region_return':
|
|
|
if param.get('score_func', None) == 'multiply_return_retention':
|
|
|
df = cal_score_multiply_return_retention_with_new_return(df=df, param=param)
|
|
@@ -550,7 +560,7 @@ def cal_score(df, param):
|
|
|
elif param.get('score_func', None) == '20240223':
|
|
|
df = cal_score_initial_20240223(df=df, param=param)
|
|
|
else:
|
|
|
- df = cal_score_initial(df=df, param=param)
|
|
|
+ df = cal_score_initial(df=df, param=param, now_h=now_h)
|
|
|
return df
|
|
|
|
|
|
|
|
@@ -642,10 +652,17 @@ def video_rank(df, now_date, now_h, rule_key, param, region, data_key, rule_rank
|
|
|
platform_return_rate = param.get('platform_return_rate', 0)
|
|
|
# h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value)
|
|
|
# & (df['platform_return_rate'] >= platform_return_rate)]
|
|
|
- h_recall_df = df[
|
|
|
- (df['lastonehour_return'] >= return_count) &
|
|
|
- (df['score'] >= score_value) &
|
|
|
- (df['platform_return_rate'] >= platform_return_rate)
|
|
|
+ # zhangbo
|
|
|
+ if now_h in [1, 2, 3, 4]:
|
|
|
+ h_recall_df = df[
|
|
|
+ (df['lastonehour_return'] > 0) |
|
|
|
+ (df['lastonehour_allreturn'] > 1)
|
|
|
+ ]
|
|
|
+ else:
|
|
|
+ h_recall_df = df[
|
|
|
+ (df['lastonehour_return'] >= return_count) &
|
|
|
+ (df['score'] >= score_value) &
|
|
|
+ (df['platform_return_rate'] >= platform_return_rate)
|
|
|
]
|
|
|
if "lastonehour_allreturn" in param.keys():
|
|
|
log_.info("采用 lastonehour_allreturn 过滤")
|
|
@@ -763,7 +780,7 @@ def process_with_region(region, df_merged, data_key, rule_key, rule_param, now_d
|
|
|
log_.info(f"多协程的region = {region} 开始执行")
|
|
|
region_df = df_merged[df_merged['code'] == region]
|
|
|
log_.info(f'该区域region = {region}, 下有多少数据量 = {len(region_df)}')
|
|
|
- score_df = cal_score(df=region_df, param=rule_param)
|
|
|
+ score_df = cal_score(df=region_df, param=rule_param, now_h=now_h)
|
|
|
video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=rule_key, param=rule_param,
|
|
|
region=region, data_key=data_key, rule_rank_h_flag=rule_rank_h_flag,
|
|
|
add_videos_with_pre_h=add_videos_with_pre_h, hour_count=hour_count)
|
|
@@ -861,7 +878,7 @@ def process_with_param(param, data_params_item, rule_params_item, region_code_li
|
|
|
for apptype, weight in data_param.items():
|
|
|
df = feature_df[feature_df['apptype'] == apptype]
|
|
|
# 计算score
|
|
|
- score_df = cal_score(df=df, param=rule_param)
|
|
|
+ score_df = cal_score(df=df, param=rule_param, now_h=now_h)
|
|
|
score_df['score'] = score_df['score'] * weight
|
|
|
score_df_list.append(score_df)
|
|
|
# 分数合并
|