|
@@ -225,8 +225,7 @@ def predict_ad_group_video_mix_with_add(dt, config_key, config_param, threshold_
|
|
|
abtest_id, abtest_config_tag = abtest_config_list[0], abtest_config_list[1]
|
|
|
for key, val in threshold_data.items():
|
|
|
key_name = f"{config_.KEY_NAME_PREFIX_AD_THRESHOLD}{abtest_id}:{abtest_config_tag}:{abtest_group}:{key}"
|
|
|
- if abtest_id == 243 and (abtest_group == "ab0" or abtest_group == "ab1" or abtest_group == "ab2"):
|
|
|
- val=0.6983435337929007
|
|
|
+
|
|
|
redis_helper.set_data_to_redis(key_name=key_name, value=val, expire_time=2 * 24 * 3600)
|
|
|
|
|
|
# 计算关怀模式实验阈值 并 写入Redis
|
|
@@ -237,8 +236,6 @@ def predict_ad_group_video_mix_with_add(dt, config_key, config_param, threshold_
|
|
|
for key, val in threshold_data.items():
|
|
|
up_val = val * threshold_rate
|
|
|
care_model_threshold_data[key] = up_val
|
|
|
- if abtest_id == 243 and (abtest_group == "ab0" or abtest_group == "ab1" or abtest_group == "ab2"):
|
|
|
- val = 0.6983435337929007
|
|
|
up_key_name = \
|
|
|
f"{config_.KEY_NAME_PREFIX_AD_THRESHOLD_CARE_MODEL}{abtest_id}:{abtest_config_tag}:{abtest_group}:{key}"
|
|
|
redis_helper.set_data_to_redis(key_name=up_key_name, value=up_val, expire_time=2 * 24 * 3600)
|