|
@@ -24,13 +24,19 @@ xgb_model = XGBClassifier(
|
|
|
objective='binary:logistic',
|
|
|
learning_rate=0.3,
|
|
|
max_depth=10,
|
|
|
- eval_metric='auc'
|
|
|
+ eval_metric=['error', 'logloss']
|
|
|
)
|
|
|
-xgb_model.fit(x_train, y_train)
|
|
|
+xgb_model.fit(x_train, y_train, eval_set=[(x_train, y_train), (x_test, y_test)])
|
|
|
# 5. 模型保存
|
|
|
xgb_model.save_model('./data/ad_xgb.model')
|
|
|
# 6. 测试集预测
|
|
|
y_test_pre = xgb_model.predict(x_test)
|
|
|
+
|
|
|
+test_df = x_test.copy()
|
|
|
+test_df['y'] = y_test
|
|
|
+test_df['y_pre'] = y_test_pre
|
|
|
+test_df.to_csv('./data/test_pre.csv', index=False)
|
|
|
+
|
|
|
# 7. 模型效果验证
|
|
|
test_accuracy = metrics.accuracy_score(y_test, y_test_pre)
|
|
|
print("Test Accuracy: %.2f%%" % (test_accuracy * 100.0))
|