|
@@ -117,6 +117,8 @@ def get_sim_videos():
|
|
|
def similarity_rank(movie_videos, sim_videos):
|
|
|
redis_helper = RedisHelper()
|
|
|
sim_result = []
|
|
|
+ if len(movie_videos) == 0 or len(sim_videos) == 0:
|
|
|
+ return
|
|
|
for video_id, title in movie_videos.items():
|
|
|
item_sim_list = []
|
|
|
for vid, title1 in sim_videos.items():
|
|
@@ -137,7 +139,9 @@ def similarity_rank(movie_videos, sim_videos):
|
|
|
relevant_data[item['vid']] = item['dist']
|
|
|
if redis_helper.key_exists(key_name=key_name):
|
|
|
redis_helper.del_keys(key_name=key_name)
|
|
|
- redis_helper.add_data_with_zset(key_name=key_name, data=relevant_data, expire_time=24*3600)
|
|
|
+ if relevant_data:
|
|
|
+ print(video_id)
|
|
|
+ redis_helper.add_data_with_zset(key_name=key_name, data=relevant_data, expire_time=10*60)
|
|
|
|
|
|
dist_df = pd.DataFrame(sim_result, columns=['top_video_id', 'title', 'vid', 'title1', 'dist'])
|
|
|
dist_df.to_csv('./data/videos_dist.csv', index=False)
|