|
@@ -87,9 +87,9 @@ def predict_ad_group_video():
|
|
|
for index, item in group_df.iterrows():
|
|
|
predict_df[item['group']] = predict_df['video_ad_share_rate'] * item['group_ad_share_rate']
|
|
|
# 获取分组对应的均值作为阈值
|
|
|
- threshold_data[item['group']] = predict_df[item['group']].mean() / 48 * 27
|
|
|
+ threshold_data[item['group']] = predict_df[item['group']].mean() / 24 * 13
|
|
|
all_group_data.extend(predict_df[item['group']].tolist())
|
|
|
- threshold_data['mean_group'] = np.mean(all_group_data) / 48 * 27
|
|
|
+ threshold_data['mean_group'] = np.mean(all_group_data) / 24 * 13
|
|
|
log_.info(f"threshold_data = {threshold_data}")
|
|
|
# 将阈值写入redis
|
|
|
for key, val in threshold_data.items():
|