|
@@ -0,0 +1,129 @@
|
|
|
+# coding utf-8
|
|
|
+import sys
|
|
|
+import json
|
|
|
+import math
|
|
|
+import pandas as pd
|
|
|
+
|
|
|
+
|
|
|
+features = [
|
|
|
+ 'apptype',
|
|
|
+ 'code',
|
|
|
+ 'videoid',
|
|
|
+ 'lastonehour_preview', # 过去1小时预曝光人数
|
|
|
+ 'lastonehour_view', # 过去1小时曝光人数
|
|
|
+ 'lastonehour_play', # 过去1小时播放人数
|
|
|
+ 'lastonehour_share', # 过去1小时分享人数
|
|
|
+ 'lastonehour_return', # 过去1小时分享,过去1小时回流人数
|
|
|
+ 'lastonehour_preview_total', # 过去1小时预曝光次数
|
|
|
+ 'lastonehour_view_total', # 过去1小时曝光次数
|
|
|
+ 'lastonehour_play_total', # 过去1小时播放次数
|
|
|
+ 'lastonehour_share_total', # 过去1小时分享次数
|
|
|
+ 'platform_return',
|
|
|
+ 'lastonehour_show', # 不区分地域
|
|
|
+ 'lastonehour_show_region', # 地域分组
|
|
|
+ 'lasttwohour_share', # h-2小时分享人数
|
|
|
+ 'lasttwohour_return_now', # h-2分享,过去1小时回流人数
|
|
|
+ 'lasttwohour_return', # h-2分享,h-2回流人数
|
|
|
+ 'lastthreehour_share', # h-3小时分享人数
|
|
|
+ 'lastthreehour_return_now', # h-3分享,过去1小时回流人数
|
|
|
+ 'lastthreehour_return', # h-3分享,h-3回流人数
|
|
|
+
|
|
|
+ 'lastonehour_return_new', # 过去1小时分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
|
|
|
+ 'lasttwohour_return_now_new', # h-2分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
|
|
|
+ 'lasttwohour_return_new', # h-2分享,h-2回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
|
|
|
+ 'lastthreehour_return_now_new', # h-3分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
|
|
|
+ 'lastthreehour_return_new', # h-3分享,h-3回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
|
|
|
+ 'platform_return_new', # 平台分发回流(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
|
|
|
+]
|
|
|
+
|
|
|
+
|
|
|
+def data_group(data_path):
|
|
|
+ """将数据按照videoid聚合(求和)"""
|
|
|
+ f = open(data_path)
|
|
|
+ index = 0
|
|
|
+ data_dict = {}
|
|
|
+ while True:
|
|
|
+ line = f.readline()
|
|
|
+ if not line:
|
|
|
+ break
|
|
|
+ if index == 0:
|
|
|
+ index += 1
|
|
|
+ continue
|
|
|
+ index += 1
|
|
|
+ items = line.strip().split(",")
|
|
|
+ # print(items)
|
|
|
+ if len(items) < len(features):
|
|
|
+ continue
|
|
|
+ video_id = items[2]
|
|
|
+ if video_id not in data_dict:
|
|
|
+ data_dict[video_id] = {'videoid': video_id}
|
|
|
+ for i, feature in enumerate(features):
|
|
|
+ if feature in ['apptype', 'code', 'videoid']:
|
|
|
+ continue
|
|
|
+ data_dict[video_id][feature] = int(float(items[i]))
|
|
|
+ else:
|
|
|
+ for i, feature in enumerate(features):
|
|
|
+ if feature in ['apptype', 'code', 'videoid']:
|
|
|
+ continue
|
|
|
+ data_dict[video_id][feature] = data_dict[video_id][feature] + int(float(items[i]))
|
|
|
+ f.close()
|
|
|
+ data_list = [item for video_id, item in data_dict.items()]
|
|
|
+ data_df = pd.DataFrame(data_list)
|
|
|
+ return data_df
|
|
|
+
|
|
|
+
|
|
|
+def cal_score(data_df):
|
|
|
+ """计算score"""
|
|
|
+ df = data_df.copy()
|
|
|
+ # share_rate_view = (share+1)/(view+1000)
|
|
|
+ df['share_rate_view'] = (df['lastonehour_share'] + 1) / (df['lastonehour_view'] + 1000)
|
|
|
+
|
|
|
+ # back_rate = (return+1)/(share+10)
|
|
|
+ df['back_rate'] = (df['lastonehour_return'] + 1) / (df['lastonehour_share'] + 10)
|
|
|
+ # back_rate_2h = (lasttwohour_return_now+1)/(share+10)
|
|
|
+ df['back_rate_2h'] = (df['lasttwohour_return_now'] + 1) / (df['lasttwohour_share'] + 10)
|
|
|
+ # back_rate_3h = (lastthreehour_return_now+1)/(share+10)
|
|
|
+ df['back_rate_3h'] = (df['lastthreehour_return_now'] + 1) / (df['lastthreehour_share'] + 10)
|
|
|
+
|
|
|
+ df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
|
|
|
+
|
|
|
+ # h-2回流留存
|
|
|
+ df['return_retention_initial_2h'] = (df['lasttwohour_return_now'] + 1) / (df['lasttwohour_return'] + 5)
|
|
|
+ df['return_retention_2h'] = df['return_retention_initial_2h'].apply(lambda x: 1 if x > 1 else x)
|
|
|
+ # h-3回流留存
|
|
|
+ df['return_retention_initial_3h'] = (df['lastthreehour_return_now'] + 1) / (df['lastthreehour_return'] + 10)
|
|
|
+ df['return_retention_3h'] = df['return_retention_initial_3h'].apply(lambda x: 0.8 if x > 0.8 else x)
|
|
|
+
|
|
|
+ # score1 = 回流/(view+5)
|
|
|
+ df['hour_score1'] = df['lastonehour_return'] / (df['lastonehour_view'] + 5)
|
|
|
+
|
|
|
+ # score2 = (回流 * (1 + h-2回流留存 + h-3回流留存))/(view+1000)
|
|
|
+ df['hour_score2'] = (df['lastonehour_return'] * (1 + df['return_retention_2h'] + df['return_retention_3h'])) / \
|
|
|
+ (df['lastonehour_view'] + 1000)
|
|
|
+
|
|
|
+ # score3 = (lastthreehour_return_now + lasttwohour_return_now + lastonehour_return)/(lastonehour_view+1000)
|
|
|
+ df['hour_score3'] = (df['lastthreehour_return_now'] + df['lasttwohour_return_now'] + df['lastonehour_return']) / \
|
|
|
+ (df['lastonehour_view'] + 1000)
|
|
|
+
|
|
|
+ # score4 = share/view * back_rate * logback
|
|
|
+ df['hour_score4'] = df['share_rate_view'] * df['back_rate'] * df['log_back']
|
|
|
+
|
|
|
+ # score5 = share/view * (back_rate + back_rate_2h + back_rate_3h) * logback
|
|
|
+ df['hour_score5'] = df['share_rate_view'] * (df['back_rate'] + df['back_rate_2h'] + df['back_rate_3h']) * df['log_back']
|
|
|
+
|
|
|
+ score_df = df[['videoid', 'hour_score1', 'hour_score2', 'hour_score3', 'hour_score4', 'hour_score5']]
|
|
|
+ # print(score_df)
|
|
|
+ return score_df
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ # 1.load data
|
|
|
+ now_date = sys.argv[1]
|
|
|
+ print(f"now_date: {now_date}")
|
|
|
+ data_path = f"./data/hour_video_data_{now_date}.csv"
|
|
|
+ data_df = data_group(data_path=data_path)
|
|
|
+ print(f"data_df shape: {data_df.shape}")
|
|
|
+ hour_score_path = f"./data/hour_score_{now_date}.csv"
|
|
|
+ score_df = cal_score(data_df=data_df)
|
|
|
+ score_df.to_csv(hour_score_path, index=False)
|
|
|
+ print(f"score_df shape: {score_df.shape}")
|