|
@@ -1,7 +1,6 @@
|
|
|
import os
|
|
|
import random
|
|
|
import time
|
|
|
-import traceback
|
|
|
|
|
|
import lightgbm as lgb
|
|
|
import pandas as pd
|
|
@@ -11,7 +10,7 @@ from sklearn.metrics import mean_absolute_error, r2_score, mean_absolute_percent
|
|
|
|
|
|
from config import set_config
|
|
|
from utils import read_from_pickle, write_to_pickle, data_normalization, \
|
|
|
- request_post, filter_video_status, send_msg_to_feishu
|
|
|
+ request_post, filter_video_status
|
|
|
from log import Log
|
|
|
from db_helper import RedisHelper, MysqlHelper
|
|
|
|
|
@@ -211,22 +210,17 @@ def predict_test():
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
- try:
|
|
|
- log_.info('rov model train start...')
|
|
|
- train_start = time.time()
|
|
|
- train_filename = config_.TRAIN_DATA_FILENAME
|
|
|
- X, Y, videos, fea = process_data(filename=train_filename)
|
|
|
- log_.info('X_shape = {}, Y_sahpe = {}'.format(X.shape, Y.shape))
|
|
|
- train(X, Y, features=fea)
|
|
|
- train_end = time.time()
|
|
|
- log_.info('rov model train end, execute time = {}ms'.format((train_end - train_start)*1000))
|
|
|
-
|
|
|
- log_.info('rov model predict start...')
|
|
|
- predict_start = time.time()
|
|
|
- predict()
|
|
|
- predict_end = time.time()
|
|
|
- log_.info('rov model predict end, execute time = {}ms'.format((predict_end - predict_start)*1000))
|
|
|
- except Exception as e:
|
|
|
- log_.error('ROV召回池更新失败, exception: {}, traceback: {}'.format(e, traceback.format_exc()))
|
|
|
- send_msg_to_feishu('rov-offline生产环境 - ROV召回池更新失败, exception: {}'.format(e))
|
|
|
-
|
|
|
+ log_.info('rov model train start...')
|
|
|
+ train_start = time.time()
|
|
|
+ train_filename = config_.TRAIN_DATA_FILENAME
|
|
|
+ X, Y, videos, fea = process_data(filename=train_filename)
|
|
|
+ log_.info('X_shape = {}, Y_sahpe = {}'.format(X.shape, Y.shape))
|
|
|
+ train(X, Y, features=fea)
|
|
|
+ train_end = time.time()
|
|
|
+ log_.info('rov model train end, execute time = {}ms'.format((train_end - train_start)*1000))
|
|
|
+
|
|
|
+ log_.info('rov model predict start...')
|
|
|
+ predict_start = time.time()
|
|
|
+ predict()
|
|
|
+ predict_end = time.time()
|
|
|
+ log_.info('rov model predict end, execute time = {}ms'.format((predict_end - predict_start)*1000))
|