Selaa lähdekoodia

add data from apptype

liqian 2 vuotta sitten
vanhempi
commit
61f39fa0e9
3 muutettua tiedostoa jossa 258 lisäystä ja 237 poistoa
  1. 65 97
      config.py
  2. 98 88
      region_rule_rank_h_by24h.py
  3. 95 52
      rule_rank_h_by_24h.py

+ 65 - 97
config.py

@@ -162,38 +162,26 @@ class BaseConfig(object):
 
     # 小时级更新过去24h数据规则参数
     RULE_PARAMS_24H_APP_TYPE = {
-        APP_TYPE['VLOG']: [
-            {
-                'data_app_type_list': [APP_TYPE['VLOG'], ],
-                'rule_params': {
-                    'rule2': {'cal_score_func': 2, 'return_count': 100, 'platform_return_rate': 0.001,
-                              'view_type': 'preview'},
-                }
-            }
-        ],
-        APP_TYPE['LONG_VIDEO']: [
-            {
-                'data_app_type_list': [APP_TYPE['VLOG'], ],
-                'rule_params': {
-                    'rule2': {'cal_score_func': 2, 'return_count': 100, 'platform_return_rate': 0.001,
-                              'view_type': 'preview'},
-                }
-            },
-            {
-                'data_app_type_list': [APP_TYPE['LONG_VIDEO'], ],
-                'rule_params': {
-                    'rule2': {'cal_score_func': 2, 'return_count': 100, 'platform_return_rate': 0.001,
-                              'view_type': 'preview'},
-                }
+        APP_TYPE['VLOG']: {
+            'rule_params': {
+                'rule2': {'cal_score_func': 2, 'return_count': 100, 'platform_return_rate': 0.001,
+                          'view_type': 'preview'},
             },
-            {
-                'data_app_type_list': [APP_TYPE['VLOG'], APP_TYPE['LONG_VIDEO'], ],
-                'rule_params': {
-                    'rule2': {'cal_score_func': 2, 'return_count': 100, 'platform_return_rate': 0.001,
-                              'view_type': 'preview'},
-                }
+            'data_params': {
+                'data1': [APP_TYPE['VLOG'], ],
+            }
+        },
+        APP_TYPE['LONG_VIDEO']: {
+            'rule_params': {
+                'rule2': {'cal_score_func': 2, 'return_count': 100, 'platform_return_rate': 0.001,
+                          'view_type': 'preview'},
             },
-        ],
+            'data_params': {
+                'data1': [APP_TYPE['VLOG'], ],
+                'data2': [APP_TYPE['LONG_VIDEO'], ],
+                'data3': [APP_TYPE['VLOG'], APP_TYPE['LONG_VIDEO'], ],
+            }
+        }
     }
 
     # 地域分组小时级更新24h使用数据  loghubods.video_each_day_update_province_24h_total_apptype
@@ -202,74 +190,54 @@ class BaseConfig(object):
 
     # 地域分组小时级更新24h规则参数
     RULE_PARAMS_REGION_24H_APP_TYPE = {
-        APP_TYPE['VLOG']: [
-            {
-                'data_app_type_list': [APP_TYPE['VLOG'], ],
-                'rule_params': {
-                    'rule2': {'view_type': 'video-show', 'return_count': 21, 'score_rule': 0,
-                              'platform_return_rate': 0.001},
-                }
-            }
-        ],
-        APP_TYPE['LONG_VIDEO']: [
-            {
-                'data_app_type_list': [APP_TYPE['VLOG'], ],
-                'rule_params': {
-                    'rule2': {'view_type': 'video-show', 'return_count': 21, 'score_rule': 0,
-                              'platform_return_rate': 0.001},
-                }
+        APP_TYPE['VLOG']: {
+            'rule_params': {
+                'rule2': {'view_type': 'video-show', 'return_count': 21, 'score_rule': 0,
+                          'platform_return_rate': 0.001},
             },
-            {
-                'data_app_type_list': [APP_TYPE['LONG_VIDEO'], ],
-                'rule_params': {
-                    'rule2': {'view_type': 'video-show', 'return_count': 21, 'score_rule': 0,
-                              'platform_return_rate': 0.001},
-                }
-            },
-            {
-                'data_app_type_list': [APP_TYPE['VLOG'], APP_TYPE['LONG_VIDEO'], ],
-                'rule_params': {
-                    'rule2': {'view_type': 'video-show', 'return_count': 21, 'score_rule': 0,
-                              'platform_return_rate': 0.001},
-                }
+            'data_params': {
+                'data1': [APP_TYPE['VLOG'], ],
+            }
+        },
+        APP_TYPE['LONG_VIDEO']: {
+            'rule_params': {
+                'rule2': {'view_type': 'video-show', 'return_count': 21, 'score_rule': 0,
+                          'platform_return_rate': 0.001},
             },
-        ],
+            'data_params': {
+                'data1': [APP_TYPE['VLOG'], ],
+                'data2': [APP_TYPE['LONG_VIDEO'], ],
+                'data3': [APP_TYPE['VLOG'], APP_TYPE['LONG_VIDEO'], ],
+            }
+        }
     }
 
     # 地域分组小时级规则更新使用数据
     PROJECT_REGION_APP_TYPE = 'loghubods'
-    TABLE_REGION_APP_TYPE = 'video_each_hour_update_province'
+    TABLE_REGION_APP_TYPE = 'video_each_hour_update_province_apptype'
 
     # 地域分组小时级规则参数
     RULE_PARAMS_REGION_APP_TYPE = {
-        APP_TYPE['VLOG']: [
-            {
-                'data_app_type_list': [APP_TYPE['VLOG'], ],
-                'rule_params': {
-                    'rule2': {'view_type': 'video-show', 'platform_return_rate': 0.001, 'region_24h_rule_key': 'rule2'},
-                }
-            }
-        ],
-        APP_TYPE['LONG_VIDEO']: [
-            {
-                'data_app_type_list': [APP_TYPE['VLOG'], ],
-                'rule_params': {
-                    'rule2': {'view_type': 'video-show', 'platform_return_rate': 0.001, 'region_24h_rule_key': 'rule2'},
-                }
-            },
-            {
-                'data_app_type_list': [APP_TYPE['LONG_VIDEO'], ],
-                'rule_params': {
-                    'rule2': {'view_type': 'video-show', 'platform_return_rate': 0.001, 'region_24h_rule_key': 'rule2'},
-                }
+        APP_TYPE['VLOG']: {
+            'rule_params': {
+                'rule2': {'view_type': 'video-show', 'platform_return_rate': 0.001, 'region_24h_rule_key': 'rule2'},
+                'rule3': {'view_type': 'video-show-region', 'platform_return_rate': 0.001,
+                          'region_24h_rule_key': 'rule2'},
             },
-            {
-                'data_app_type_list': [APP_TYPE['VLOG'], APP_TYPE['LONG_VIDEO'], ],
-                'rule_params': {
-                    'rule2': {'view_type': 'video-show', 'platform_return_rate': 0.001, 'region_24h_rule_key': 'rule2'},
-                }
+            'data_params': {
+                'data1': [APP_TYPE['VLOG'], ],
+            }
+        },
+        APP_TYPE['LONG_VIDEO']: {
+            'rule_params': {
+                'rule2': {'view_type': 'video-show', 'platform_return_rate': 0.001, 'region_24h_rule_key': 'rule2'},
             },
-        ],
+            'data_params': {
+                'data1': [APP_TYPE['VLOG'], ],
+                'data2': [APP_TYPE['LONG_VIDEO'], ],
+                'data3': [APP_TYPE['VLOG'], APP_TYPE['LONG_VIDEO'], ],
+            }
+        }
     }
 
     # 老视频更新使用数据
@@ -305,13 +273,13 @@ class BaseConfig(object):
     # 完整格式:com.weiqu.video.recall.hot.item.score.dup.day.pre.{rule_key}.{date}
     RECALL_KEY_NAME_PREFIX_DUP_DAY_PRE = 'com.weiqu.video.recall.hot.item.score.dup.day.pre.'
 
-    # 小程序小时级24h数据更新结果存放 redis key前缀,完整格式:com.weiqu.video.recall.item.score.day.{rule_key}.{date}.{h}
-    RECALL_KEY_NAME_PREFIX_BY_24H = 'com.weiqu.video.recall.item.score.24h.'
+    # 小程序小时级24h数据更新结果存放 redis key前缀,完整格式:com.weiqu.video.recall.item.score.apptype.24h.{appType}.{data_key}.{rule_key}.{date}.{h}
+    RECALL_KEY_NAME_PREFIX_BY_24H = 'com.weiqu.video.recall.item.score.apptype.24h.'
     # 小程序离线ROV模型结果与小程序小时级24h更新结果去重后 存放 redis key前缀,
     # 完整格式:com.weiqu.video.recall.hot.item.score.dup.24h.{rule_key}.{date}.{h}
     RECALL_KEY_NAME_PREFIX_DUP_24H = 'com.weiqu.video.recall.hot.item.score.dup.24h.'
-    # 小时级视频状态不符合推荐要求的列表 redis key,完整格式:com.weiqu.video.filter.h.item.24h.{rule_key}
-    H_VIDEO_FILER_24H = 'com.weiqu.video.filter.h.item.24h.'
+    # 小时级视频状态不符合推荐要求的列表 redis key,完整格式:com.weiqu.video.filter.h.item.apptype.24h.{appType}.{data_key}.{rule_key}
+    H_VIDEO_FILER_24H = 'com.weiqu.video.filter.h.item.apptype.24h.'
 
     # 小程序地域分组小时级更新结果存放 redis key前缀,完整格式:com.weiqu.video.recall.item.score.region.h.{region}.{rule_key}.{date}.{h}
     RECALL_KEY_NAME_PREFIX_REGION_BY_H = 'com.weiqu.video.recall.item.score.region.h.'
@@ -338,16 +306,16 @@ class BaseConfig(object):
     # 小程序地域分组天级更新结果存放 redis key前缀,完整格式:com.weiqu.video.recall.item.score.region.day.{region}.{rule_key}.{date}
     RECALL_KEY_NAME_PREFIX_REGION_BY_DAY = 'com.weiqu.video.recall.item.score.region.day.'
 
-    # 小程序地域分组小时级更新24h结果存放 redis key前缀,完整格式:com.weiqu.video.recall.item.score.region.24h.{region}.{rule_key}.{date}.{h}
-    RECALL_KEY_NAME_PREFIX_REGION_BY_24H = 'com.weiqu.video.recall.item.score.region.24h.'
+    # 小程序地域分组小时级更新24h结果存放 redis key前缀,完整格式:com.weiqu.video.recall.item.score.region.apptype.24h.{appType}.{data_key}.{region}.{rule_key}.{date}.{h}
+    RECALL_KEY_NAME_PREFIX_REGION_BY_24H = 'com.weiqu.video.recall.item.score.region.apptype.24h.'
     # 小程序天级更新结果与 小程序地域分组小时级更新24h结果 去重后 存放 redis key前缀,
     # 完整格式:com.weiqu.video.recall.hot.item.score.dup.region.day.24h.{region}.{rule_key}.{date}.{h}
     RECALL_KEY_NAME_PREFIX_DUP_REGION_DAY_24H = 'com.weiqu.video.recall.hot.item.score.dup.region.day.24h.'
     # 小程序离线ROV模型结果与 小程序天级更新结果/小程序地域分组小时级更新24h结果 去重后 存放 redis key前缀,
     # 完整格式:com.weiqu.video.recall.hot.item.score.dup.region.24h.{region}.{rule_key}.{date}.{h}
     RECALL_KEY_NAME_PREFIX_DUP_REGION_24H = 'com.weiqu.video.recall.hot.item.score.dup.region.24h.'
-    # 地域分组小时级更新24h视频状态不符合推荐要求的列表 redis key,完整格式:com.weiqu.video.filter.region.h.item.24h.{region}.{rule_key}
-    REGION_H_VIDEO_FILER_24H = 'com.weiqu.video.filter.region.h.item.24h.'
+    # 地域分组小时级更新24h视频状态不符合推荐要求的列表 redis key,完整格式:com.weiqu.video.filter.region.h.item.apptype.24h.{appType}.{data_key}.{region}.{rule_key}
+    REGION_H_VIDEO_FILER_24H = 'com.weiqu.video.filter.region.h.item.apptype.24h.'
 
 
     # 小程序老视频更新结果存放 redis key 前缀,完整格式:'com.weiqu.video.recall.old.item.{date}'
@@ -755,8 +723,8 @@ class ProductionConfig(BaseConfig):
 
 def set_config():
     # 获取环境变量 ROV_OFFLINE_ENV
-    env = os.environ.get('ROV_OFFLINE_ENV')
-    # env = 'dev'
+    # env = os.environ.get('ROV_OFFLINE_ENV')
+    env = 'dev'
     if env is None:
         # log_.error('ENV ERROR: is None!')
         return

+ 98 - 88
region_rule_rank_h_by24h.py

@@ -7,6 +7,7 @@
 import datetime
 import pandas as pd
 import math
+from functools import reduce
 from odps import ODPS
 from threading import Timer
 from utils import RedisHelper, get_data_from_odps, filter_video_status
@@ -16,45 +17,10 @@ from log import Log
 config_, _ = set_config()
 log_ = Log()
 
-region_code = {
-    '河北省': '130000',
-    '山西省': '140000',
-    '辽宁省': '210000',
-    '吉林省': '220000',
-    '黑龙江省': '230000',
-    '江苏省': '320000',
-    '浙江省': '330000',
-    '安徽省': '340000',
-    '福建省': '350000',
-    '江西省': '360000',
-    '山东省': '370000',
-    '河南省': '410000',
-    '湖北省': '420000',
-    '湖南省': '430000',
-    '广东省': '440000',
-    '海南省': '460000',
-    '四川省': '510000',
-    '贵州省': '520000',
-    '云南省': '530000',
-    '陕西省': '610000',
-    '甘肃省': '620000',
-    '青海省': '630000',
-    '台湾省': '710000',
-    '北京': '110000',
-    '天津': '120000',
-    '内蒙古': '150000',
-    '上海': '310000',
-    '广西': '450000',
-    '重庆': '500000',
-    '西藏': '540000',
-    '宁夏': '640000',
-    '新疆': '650000',
-    '香港': '810000',
-    '澳门': '820000',
-    'None': '-1'
-}
+region_code = config_.REGION_CODE
 
 features = [
+    'apptype',
     'code',  # 省份编码
     'videoid',
     'lastday_preview',  # 昨日预曝光人数
@@ -153,7 +119,7 @@ def cal_score(df, param):
     return df
 
 
-def video_rank(df, now_date, now_h, rule_key, param, region):
+def video_rank(df, now_date, now_h, rule_key, param, region, app_type, data_key):
     """
     获取符合进入召回源条件的视频
     :param df:
@@ -192,39 +158,78 @@ def video_rank(df, now_date, now_h, rule_key, param, region):
         h_video_ids.append(int(video_id))
 
     day_recall_key_name = \
-        f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H}{region}.{rule_key}." \
+        f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H}{app_type}.{data_key}.{region}.{rule_key}." \
         f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
     if len(day_recall_result) > 0:
         redis_helper.add_data_with_zset(key_name=day_recall_key_name, data=day_recall_result, expire_time=23 * 3600)
         # 清空线上过滤应用列表
-        redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER_24H}{region}.{rule_key}")
+        redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER_24H}{app_type}.{data_key}.{region}.{rule_key}")
+
     # 与其他召回视频池去重,存入对应的redis
     # dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, region=region)
 
 
+def merge_df(df_left, df_right):
+    """
+    df按照videoid, code 合并,对应特征求和
+    :param df_left:
+    :param df_right:
+    :return:
+    """
+    df_merged = pd.merge(df_left, df_right, on=['videoid', 'code'], how='outer', suffixes=['_x', '_y'])
+    df_merged.fillna(0, inplace=True)
+    feature_list = ['videoid', 'code']
+    for feature in features:
+        if feature in ['apptype', 'videoid', 'code']:
+            continue
+        df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
+        feature_list.append(feature)
+    return df_merged[feature_list]
+
+
 def rank_by_24h(project, table, now_date, now_h, rule_params, region_code_list):
     # 获取特征数据
     feature_df = get_feature_data(project=project, table=table, now_date=now_date)
+    feature_df['apptype'] = feature_df['apptype'].astype(int)
     # rank
-    for key, value in rule_params.items():
-        log_.info(f"rule = {key}, param = {value}")
-        for region in region_code_list:
-            log_.info(f"region = {region}")
-            # 计算score
-            region_df = feature_df[feature_df['code'] == region]
-            log_.info(f'region_df count = {len(region_df)}')
-            score_df = cal_score(df=region_df, param=value)
-            video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value, region=region)
-            # to-csv
-            score_filename = f"score_24h_{region}_{key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
-            score_df.to_csv(f'./data/{score_filename}')
-            # to-logs
-            log_.info({"date": datetime.datetime.strftime(now_date, '%Y%m%d%H'),
-                       "region_code": region,
-                       "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H,
-                       "rule_key": key,
-                       # "score_df": score_df[['videoid', 'score']]
-                       })
+    for app_type, params in rule_params.items():
+        log_.info(f"app_type = {app_type}")
+        for data_key, data_param in params['data_params'].items():
+            log_.info(f"data_key = {data_key}, data_param = {data_param}")
+            df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
+            df_merged = reduce(merge_df, df_list)
+            for rule_key, rule_param in params['rule_params'].items():
+                log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
+                for region in region_code_list:
+                    log_.info(f"region = {region}")
+                    # 计算score
+                    region_df = df_merged[df_merged['code'] == region]
+                    log_.info(f'region_df count = {len(region_df)}')
+                    score_df = cal_score(df=region_df, param=rule_param)
+                    video_rank(df=score_df, now_date=now_date, now_h=now_h,
+                               rule_key=rule_key, param=rule_param, region=region,
+                               app_type=app_type, data_key=data_key)
+
+
+    # for key, value in rule_params.items():
+    #     log_.info(f"rule = {key}, param = {value}")
+    #     for region in region_code_list:
+    #         log_.info(f"region = {region}")
+    #         # 计算score
+    #         region_df = feature_df[feature_df['code'] == region]
+    #         log_.info(f'region_df count = {len(region_df)}')
+    #         score_df = cal_score(df=region_df, param=value)
+    #         video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value, region=region)
+    #         # to-csv
+    #         score_filename = f"score_24h_{region}_{key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
+    #         score_df.to_csv(f'./data/{score_filename}')
+    #         # to-logs
+    #         log_.info({"date": datetime.datetime.strftime(now_date, '%Y%m%d%H'),
+    #                    "region_code": region,
+    #                    "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H,
+    #                    "rule_key": key,
+    #                    # "score_df": score_df[['videoid', 'score']]
+    #                    })
 
 
 def dup_to_redis(h_video_ids, now_date, now_h, rule_key, region):
@@ -265,10 +270,8 @@ def dup_to_redis(h_video_ids, now_date, now_h, rule_key, region):
         redis_helper.add_data_with_zset(key_name=model_data_dup_key_name, data=model_data_dup, expire_time=23 * 3600)
 
 
-def h_rank_bottom(now_date, now_h, rule_key, region_code_list):
+def h_rank_bottom(now_date, now_h, rule_params, region_code_list):
     """未按时更新数据,用上一小时结果作为当前小时的数据"""
-    log_.info(f"rule_key = {rule_key}")
-    # 获取rov模型结果
     redis_helper = RedisHelper()
     if now_h == 0:
         redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
@@ -279,35 +282,42 @@ def h_rank_bottom(now_date, now_h, rule_key, region_code_list):
 
     # 以上一小时的地域分组数据作为当前小时的数据
     key_prefix = config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H
-    for region in region_code_list:
-        log_.info(f"region = {region}")
-        key_name = f"{key_prefix}{region}.{rule_key}.{redis_dt}.{redis_h}"
-        initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
-        if initial_data is None:
-            initial_data = []
-        final_data = dict()
-        h_video_ids = []
-        for video_id, score in initial_data:
-            final_data[video_id] = score
-            h_video_ids.append(int(video_id))
-        # 存入对应的redis
-        final_key_name = \
-            f"{key_prefix}{region}.{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
-        if len(final_data) > 0:
-            redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600)
-        # 清空线上过滤应用列表
-        redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER_24H}{region}.{rule_key}")
-        # 与其他召回视频池去重,存入对应的redis
-        dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, region=region)
+    for app_type, params in rule_params.items():
+        log_.info(f"app_type = {app_type}")
+        for data_key, data_param in params['data_params'].items():
+            log_.info(f"data_key = {data_key}, data_param = {data_param}")
+            for rule_key, rule_param in params['rule_params'].items():
+                log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
+                for region in region_code_list:
+                    log_.info(f"region = {region}")
+                    key_name = f"{key_prefix}{app_type}.{data_key}.{region}.{rule_key}.{redis_dt}.{redis_h}"
+                    initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
+                    if initial_data is None:
+                        initial_data = []
+                    final_data = dict()
+                    h_video_ids = []
+                    for video_id, score in initial_data:
+                        final_data[video_id] = score
+                        h_video_ids.append(int(video_id))
+                    # 存入对应的redis
+                    final_key_name = \
+                        f"{key_prefix}{app_type}.{data_key}.{region}.{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
+                    if len(final_data) > 0:
+                        redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600)
+                    # 清空线上过滤应用列表
+                    redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER_24H}{app_type}.{data_key}.{region}.{rule_key}")
+
+                    # 与其他召回视频池去重,存入对应的redis
+                    # dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, region=region)
 
 
 def h_timer_check():
-    rule_params = config_.RULE_PARAMS_REGION_24H
-    project = config_.PROJECT_REGION_24H
-    table = config_.TABLE_REGION_24H
+    rule_params = config_.RULE_PARAMS_REGION_24H_APP_TYPE
+    project = config_.PROJECT_REGION_24H_APP_TYPE
+    table = config_.TABLE_REGION_24H_APP_TYPE
     region_code_list = [code for region, code in region_code.items()]
-    now_date = datetime.datetime.today()
-    now_h = datetime.datetime.now().hour
+    now_date = datetime.datetime.today() - datetime.timedelta(hours=7)
+    now_h = datetime.datetime.now().hour - 7
     now_min = datetime.datetime.now().minute
     log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
     # 查看当天更新的数据是否已准备好
@@ -320,7 +330,7 @@ def h_timer_check():
     elif now_min > 50:
         log_.info('24h_recall data is None, use bottom data!')
         for key, _ in rule_params.items():
-            h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key, region_code_list=region_code_list)
+            h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list)
     else:
         # 数据没准备好,1分钟后重新检查
         Timer(60, h_timer_check).start()

+ 95 - 52
rule_rank_h_by_24h.py

@@ -1,5 +1,6 @@
 import pandas as pd
 import math
+from functools import reduce
 from odps import ODPS
 from threading import Timer
 from datetime import datetime, timedelta
@@ -13,6 +14,7 @@ config_, _ = set_config()
 log_ = Log()
 
 features = [
+    'apptype',
     'videoid',
     'preview人数',  # 过去24h预曝光人数
     'view人数',  # 过去24h曝光人数
@@ -119,7 +121,7 @@ def cal_score2(df, param):
     return df
 
 
-def video_rank_h(df, now_date, now_h, rule_key, param):
+def video_rank_h(df, now_date, now_h, rule_key, param, app_type, data_key):
     """
     获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
     :param df:
@@ -127,15 +129,17 @@ def video_rank_h(df, now_date, now_h, rule_key, param):
     :param now_h:
     :param rule_key: 天级规则数据进入条件
     :param param: 天级规则数据进入条件参数
+    :param app_type:
+    :param data_key: 使用数据标识
     :return:
     """
-    # 获取rov模型结果
     redis_helper = RedisHelper()
-    key_name = get_rov_redis_key(now_date=now_date)
-    initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
-    if initial_data is None:
-        initial_data = []
-    log_.info(f'initial data count = {len(initial_data)}')
+    # 获取rov模型结果
+    # key_name = get_rov_redis_key(now_date=now_date)
+    # initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
+    # if initial_data is None:
+    #     initial_data = []
+    # log_.info(f'initial data count = {len(initial_data)}')
 
     # 获取符合进入召回源条件的视频
     return_count = param.get('return_count')
@@ -166,11 +170,11 @@ def video_rank_h(df, now_date, now_h, rule_key, param):
         day_recall_result[int(video_id)] = float(score)
         day_video_ids.append(int(video_id))
     day_recall_key_name = \
-        f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}{rule_key}.{now_dt}.{now_h}"
+        f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}{app_type}.{data_key}.{rule_key}.{now_dt}.{now_h}"
     if len(day_recall_result) > 0:
         redis_helper.add_data_with_zset(key_name=day_recall_key_name, data=day_recall_result, expire_time=23 * 3600)
         # 清空线上过滤应用列表
-        redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER_24H}{rule_key}")
+        redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER_24H}{app_type}.{data_key}.{rule_key}")
 
     # 去重更新rov模型结果,并另存为redis中
     # initial_data_dup = {}
@@ -184,34 +188,69 @@ def video_rank_h(df, now_date, now_h, rule_key, param):
     #     redis_helper.add_data_with_zset(key_name=initial_key_name, data=initial_data_dup, expire_time=23 * 3600)
 
 
+def merge_df(df_left, df_right):
+    """
+    df按照videoid 合并,对应特征求和
+    :param df_left:
+    :param df_right:
+    :return:
+    """
+    df_merged = pd.merge(df_left, df_right, on=['videoid'], how='outer', suffixes=['_x', '_y'])
+    df_merged.fillna(0, inplace=True)
+    feature_list = ['videoid']
+    for feature in features:
+        if feature in ['apptype', 'videoid']:
+            continue
+        df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
+        feature_list.append(feature)
+    return df_merged[feature_list]
+
+
 def rank_by_h(now_date, now_h, rule_params, project, table):
     # 获取特征数据
     feature_df = get_feature_data(now_date=now_date, now_h=now_h, project=project, table=table)
+    feature_df['apptype'] = feature_df['apptype'].astype(int)
     # rank
-    for key, value in rule_params.items():
-        log_.info(f"rule = {key}, param = {value}")
-        # 计算score
-        cal_score_func = value.get('cal_score_func', 1)
-        if cal_score_func == 2:
-            score_df = cal_score2(df=feature_df, param=value)
-        else:
-            score_df = cal_score1(df=feature_df)
-        video_rank_h(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value)
-        # to-csv
-        score_filename = f"score_by24h_{key}_{datetime.strftime(now_date, '%Y%m%d%H')}.csv"
-        score_df.to_csv(f'./data/{score_filename}')
-        # to-logs
-        log_.info({"date": datetime.strftime(now_date, '%Y%m%d%H'),
-                   "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_BY_24H,
-                   "rule_key": key,
-                   # "score_df": score_df[['videoid', 'score']]
-                   })
-
-
-def h_rank_bottom(now_date, now_h, rule_key):
+    for app_type, params in rule_params.items():
+        log_.info(f"app_type = {app_type}")
+        for data_key, data_param in params['data_params'].items():
+            log_.info(f"data_key = {data_key}, data_param = {data_param}")
+            df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
+            df_merged = reduce(merge_df, df_list)
+            for rule_key, rule_param in params['rule_params'].items():
+                log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
+                # 计算score
+                cal_score_func = rule_param.get('cal_score_func', 1)
+                if cal_score_func == 2:
+                    score_df = cal_score2(df=df_merged, param=rule_param)
+                else:
+                    score_df = cal_score1(df=df_merged)
+                video_rank_h(df=score_df, now_date=now_date, now_h=now_h, rule_key=rule_key, param=rule_param,
+                             app_type=app_type, data_key=data_key)
+
+
+    # for key, value in rule_params.items():
+    #     log_.info(f"rule = {key}, param = {value}")
+    #     # 计算score
+    #     cal_score_func = value.get('cal_score_func', 1)
+    #     if cal_score_func == 2:
+    #         score_df = cal_score2(df=feature_df, param=value)
+    #     else:
+    #         score_df = cal_score1(df=feature_df)
+    #     video_rank_h(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value)
+    #     # to-csv
+    #     score_filename = f"score_by24h_{key}_{datetime.strftime(now_date, '%Y%m%d%H')}.csv"
+    #     score_df.to_csv(f'./data/{score_filename}')
+    #     # to-logs
+    #     log_.info({"date": datetime.strftime(now_date, '%Y%m%d%H'),
+    #                "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_BY_24H,
+    #                "rule_key": key,
+    #                # "score_df": score_df[['videoid', 'score']]
+    #                })
+
+
+def h_rank_bottom(now_date, now_h, rule_params):
     """未按时更新数据,用模型召回数据作为当前的数据"""
-    log_.info(f"rule_key = {rule_key}")
-    # 获取rov模型结果
     redis_helper = RedisHelper()
     if now_h == 0:
         redis_dt = datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')
@@ -220,27 +259,32 @@ def h_rank_bottom(now_date, now_h, rule_key):
         redis_dt = datetime.strftime(now_date, '%Y%m%d')
         redis_h = now_h - 1
     key_prefix_list = [config_.RECALL_KEY_NAME_PREFIX_BY_24H, config_.RECALL_KEY_NAME_PREFIX_DUP_24H]
-    for key_prefix in key_prefix_list:
-        key_name = f"{key_prefix}{rule_key}.{redis_dt}.{redis_h}"
-        initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
-        if initial_data is None:
-            initial_data = []
-        final_data = dict()
-        for video_id, score in initial_data:
-            final_data[video_id] = score
-        # 存入对应的redis
-        final_key_name = \
-            f"{key_prefix}{rule_key}.{datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
-        if len(final_data) > 0:
-            redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600)
-        # 清空线上过滤应用列表
-        redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER_24H}{rule_key}")
+    for app_type, params in rule_params.items():
+        log_.info(f"app_type = {app_type}")
+        for data_key, data_param in params['data_params'].items():
+            log_.info(f"data_key = {data_key}, data_param = {data_param}")
+            for rule_key, rule_param in params['rule_params'].items():
+                for key_prefix in key_prefix_list:
+                    key_name = f"{key_prefix}{app_type}.{data_key}.{rule_key}.{redis_dt}.{redis_h}"
+                    initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
+                    if initial_data is None:
+                        initial_data = []
+                    final_data = dict()
+                    for video_id, score in initial_data:
+                        final_data[video_id] = score
+                    # 存入对应的redis
+                    final_key_name = \
+                        f"{key_prefix}{app_type}.{data_key}.{rule_key}.{datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
+                    if len(final_data) > 0:
+                        redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600)
+                    # 清空线上过滤应用列表
+                    redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER_24H}{app_type}.{data_key}.{rule_key}")
 
 
 def h_timer_check():
-    project = config_.PROJECT_24H
-    table = config_.TABLE_24H
-    rule_params = config_.RULE_PARAMS_24H
+    project = config_.PROJECT_24H_APP_TYPE
+    table = config_.TABLE_24H_APP_TYPE
+    rule_params = config_.RULE_PARAMS_24H_APP_TYPE
     now_date = datetime.today()
     log_.info(f"now_date: {datetime.strftime(now_date, '%Y%m%d%H')}")
     now_min = datetime.now().minute
@@ -253,8 +297,7 @@ def h_timer_check():
         rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params, project=project, table=table)
     elif now_min > 50:
         log_.info('h_by24h_recall data is None!')
-        for key, _ in rule_params.items():
-            h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key)
+        h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params)
     else:
         # 数据没准备好,1分钟后重新检查
         Timer(60, h_timer_check).start()