| 
					
				 | 
			
			
				@@ -220,17 +220,26 @@ from candidate_item 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     item_h_dict = {} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     k_col = 'i_id' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     dt = datetime 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    key_name_prefix = f"{config_.KEY_NAME_PREFIX_AD_OUT_MODEL_SCORE_ITEM}{model_key}:" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    key_name_prefix = f"{config_.KEY_NAME_PREFIX_AD_OUT_MODEL_SCORE_ITEM}{model_key}" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     print(key_name_prefix) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    mean_item_h = 0.0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    count_item_h = 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     with data.open_reader() as reader: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         for row in reader: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            k = row['i_id'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            k = str(row['i_id']) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             item_features = get_item_features(row) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             item_h = lr_model.predict_h(item_features) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             redis_helper.set_data_to_redis(f"{key_name_prefix}:{k}", item_h, 28 * 3600) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             item_h_dict[k] = item_h 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            mean_item_h += item_h 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            count_item_h += 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             # print(item_features) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             # print(item_h) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    mean_item_h = mean_item_h / count_item_h  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    item_h_dict['mean'] = mean_item_h  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    print(mean_item_h) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    k = 'mean' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    redis_helper.set_data_to_redis(f"{key_name_prefix}:{k}", mean_item_h, 28 * 3600) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     with open('{}.json'.format(key_name_prefix), 'w') as fout: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         json.dump(item_h_dict, fout, indent=2, ensure_ascii=False, sort_keys=True) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 |