|  | @@ -0,0 +1,1119 @@
 | 
	
		
			
				|  |  | +# -*- coding: utf-8 -*-
 | 
	
		
			
				|  |  | +import multiprocessing
 | 
	
		
			
				|  |  | +import traceback
 | 
	
		
			
				|  |  | +import gevent
 | 
	
		
			
				|  |  | +import datetime
 | 
	
		
			
				|  |  | +import pandas as pd
 | 
	
		
			
				|  |  | +import math
 | 
	
		
			
				|  |  | +from functools import reduce
 | 
	
		
			
				|  |  | +from odps import ODPS
 | 
	
		
			
				|  |  | +from threading import Timer, Thread
 | 
	
		
			
				|  |  | +from utils import MysqlHelper, RedisHelper, get_data_from_odps, filter_video_status, filter_shield_video, \
 | 
	
		
			
				|  |  | +    check_table_partition_exits, filter_video_status_app, send_msg_to_feishu, filter_political_videos
 | 
	
		
			
				|  |  | +from config import set_config
 | 
	
		
			
				|  |  | +from log import Log
 | 
	
		
			
				|  |  | +from check_video_limit_distribute import update_limit_video_score
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +config_, _ = set_config()
 | 
	
		
			
				|  |  | +log_ = Log()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +region_code = config_.REGION_CODE
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def get_region_code(region):
 | 
	
		
			
				|  |  | +    """获取省份对应的code"""
 | 
	
		
			
				|  |  | +    mysql_helper = MysqlHelper(mysql_info=config_.MYSQL_INFO)
 | 
	
		
			
				|  |  | +    sql = f"SELECT ad_code FROM region_adcode WHERE parent_id = 0 AND region LIKE '{region}%';"
 | 
	
		
			
				|  |  | +    ad_code = mysql_helper.get_data(sql=sql)
 | 
	
		
			
				|  |  | +    return ad_code[0][0]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def get_rov_redis_key(now_date):
 | 
	
		
			
				|  |  | +    """获取rov模型结果存放key"""
 | 
	
		
			
				|  |  | +    redis_helper = RedisHelper()
 | 
	
		
			
				|  |  | +    now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
 | 
	
		
			
				|  |  | +    key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
 | 
	
		
			
				|  |  | +    if not redis_helper.key_exists(key_name=key_name):
 | 
	
		
			
				|  |  | +        pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
 | 
	
		
			
				|  |  | +        key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
 | 
	
		
			
				|  |  | +    return key_name
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def get_day_30day_videos(now_date, data_key, rule_key):
 | 
	
		
			
				|  |  | +    """获取天级更新相对30天的视频id"""
 | 
	
		
			
				|  |  | +    redis_helper = RedisHelper()
 | 
	
		
			
				|  |  | +    day_30day_recall_key_prefix = config_.RECALL_KEY_NAME_PREFIX_30DAY
 | 
	
		
			
				|  |  | +    now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
 | 
	
		
			
				|  |  | +    day_30day_recall_key_name = f"{day_30day_recall_key_prefix}{data_key}:{rule_key}:{now_dt}"
 | 
	
		
			
				|  |  | +    if not redis_helper.key_exists(key_name=day_30day_recall_key_name):
 | 
	
		
			
				|  |  | +        redis_dt = datetime.datetime.strftime((now_date - datetime.timedelta(days=1)), '%Y%m%d')
 | 
	
		
			
				|  |  | +        day_30day_recall_key_name = f"{day_30day_recall_key_prefix}{data_key}:{rule_key}:{redis_dt}"
 | 
	
		
			
				|  |  | +    data = redis_helper.get_all_data_from_zset(key_name=day_30day_recall_key_name, with_scores=True)
 | 
	
		
			
				|  |  | +    if data is None:
 | 
	
		
			
				|  |  | +        return None
 | 
	
		
			
				|  |  | +    video_ids = [int(video_id) for video_id, _ in data]
 | 
	
		
			
				|  |  | +    return video_ids
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def get_feature_data(project, table, now_date):
 | 
	
		
			
				|  |  | +    """获取特征数据"""
 | 
	
		
			
				|  |  | +    dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
 | 
	
		
			
				|  |  | +    # dt = '2022041310'
 | 
	
		
			
				|  |  | +    records = get_data_from_odps(date=dt, project=project, table=table)
 | 
	
		
			
				|  |  | +    feature_data = []
 | 
	
		
			
				|  |  | +    for record in records:
 | 
	
		
			
				|  |  | +        item = {}
 | 
	
		
			
				|  |  | +        for feature_name in features:
 | 
	
		
			
				|  |  | +            item[feature_name] = record[feature_name]
 | 
	
		
			
				|  |  | +        feature_data.append(item)
 | 
	
		
			
				|  |  | +    feature_df = pd.DataFrame(feature_data)
 | 
	
		
			
				|  |  | +    return feature_df
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def cal_score_initial(df, param):
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    计算score
 | 
	
		
			
				|  |  | +    :param df: 特征数据
 | 
	
		
			
				|  |  | +    :param param: 规则参数
 | 
	
		
			
				|  |  | +    :return:
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    # score计算公式: sharerate*backrate*logback*ctr
 | 
	
		
			
				|  |  | +    # sharerate = lastonehour_share/(lastonehour_play+1000)
 | 
	
		
			
				|  |  | +    # backrate = lastonehour_return/(lastonehour_share+10)
 | 
	
		
			
				|  |  | +    # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
 | 
	
		
			
				|  |  | +    # score = sharerate * backrate * LOG(lastonehour_return+1) * K2
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df = df.fillna(0)
 | 
	
		
			
				|  |  | +    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
 | 
	
		
			
				|  |  | +    df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
 | 
	
		
			
				|  |  | +    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
 | 
	
		
			
				|  |  | +    if param.get('view_type', None) == 'video-show':
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
 | 
	
		
			
				|  |  | +    elif param.get('view_type', None) == 'video-show-region':
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
 | 
	
		
			
				|  |  | +    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df['score1'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    click_score_rate = param.get('click_score_rate', None)
 | 
	
		
			
				|  |  | +    back_score_rate = param.get('click_score_rate', None)
 | 
	
		
			
				|  |  | +    if click_score_rate is not None:
 | 
	
		
			
				|  |  | +        df['score'] = (1 - click_score_rate) * df['score1'] + click_score_rate * df['K2']
 | 
	
		
			
				|  |  | +    elif back_score_rate is not None:
 | 
	
		
			
				|  |  | +        df['score'] = (1 - back_score_rate) * df['score1'] + back_score_rate * df['back_rate']
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        df['score'] = df['score1']
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df = df.sort_values(by=['score'], ascending=False)
 | 
	
		
			
				|  |  | +    return df
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def cal_score_add_return(df, param):
 | 
	
		
			
				|  |  | +    # score计算公式: sharerate*(backrate*logback + backrate2*logback_now2 + backrate3*logback_now3)*ctr
 | 
	
		
			
				|  |  | +    # sharerate = lastonehour_share/(lastonehour_play+1000)
 | 
	
		
			
				|  |  | +    # backrate = lastonehour_return/(lastonehour_share+10)
 | 
	
		
			
				|  |  | +    # backrate2 = lasttwohour_return_now/(lasttwohour_share+10)
 | 
	
		
			
				|  |  | +    # backrate3 = lastthreehour_return_now/(lastthreehour_share+10)
 | 
	
		
			
				|  |  | +    # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
 | 
	
		
			
				|  |  | +    # score = k2 * sharerate * (backrate * LOG(lastonehour_return+1) + backrate_2 * LOG(lasttwohour_return_now+1) + backrate_3 * LOG(lastthreehour_return_now+1))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df = df.fillna(0)
 | 
	
		
			
				|  |  | +    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
 | 
	
		
			
				|  |  | +    df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
 | 
	
		
			
				|  |  | +    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
 | 
	
		
			
				|  |  | +    df['back_rate2'] = df['lasttwohour_return_now'] / (df['lasttwohour_share'] + 10)
 | 
	
		
			
				|  |  | +    df['log_back2'] = (df['lasttwohour_return_now'] + 1).apply(math.log)
 | 
	
		
			
				|  |  | +    df['back_rate3'] = df['lastthreehour_return_now'] / (df['lastthreehour_share'] + 10)
 | 
	
		
			
				|  |  | +    df['log_back3'] = (df['lastthreehour_return_now'] + 1).apply(math.log)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    if param.get('view_type', None) == 'video-show':
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
 | 
	
		
			
				|  |  | +    elif param.get('view_type', None) == 'video-show-region':
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
 | 
	
		
			
				|  |  | +    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
 | 
	
		
			
				|  |  | +    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df['score'] = df['K2'] * df['share_rate'] * (
 | 
	
		
			
				|  |  | +            df['back_rate'] * df['log_back'] +
 | 
	
		
			
				|  |  | +            df['back_rate2'] * df['log_back2'] +
 | 
	
		
			
				|  |  | +            df['back_rate3'] * df['log_back3']
 | 
	
		
			
				|  |  | +    )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df = df.sort_values(by=['score'], ascending=False)
 | 
	
		
			
				|  |  | +    return df
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def cal_score_multiply_return_retention(df, param):
 | 
	
		
			
				|  |  | +    # score计算公式: k2 * sharerate * backrate * LOG(lastonehour_return+1) * 前两小时回流留存
 | 
	
		
			
				|  |  | +    # sharerate = lastonehour_share/(lastonehour_play+1000)
 | 
	
		
			
				|  |  | +    # backrate = lastonehour_return/(lastonehour_share+10)
 | 
	
		
			
				|  |  | +    # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
 | 
	
		
			
				|  |  | +    # 前两小时回流留存 return_retention_initial = (lasttwohour_return_now + lastthreehour_return_now)/(lasttwohour_return + lastthreehour_return + 1)
 | 
	
		
			
				|  |  | +    # return_retention = 0.5 if return_retention_initial == 0 else return_retention_initial
 | 
	
		
			
				|  |  | +    # score = k2 * sharerate * backrate * LOG(lastonehour_return+1) * return_retention
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df = df.fillna(0)
 | 
	
		
			
				|  |  | +    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
 | 
	
		
			
				|  |  | +    df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
 | 
	
		
			
				|  |  | +    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    if param.get('view_type', None) == 'video-show':
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
 | 
	
		
			
				|  |  | +    elif param.get('view_type', None) == 'video-show-region':
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
 | 
	
		
			
				|  |  | +    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df['return_retention_initial'] = (df['lasttwohour_return_now'] + df['lastthreehour_return_now']) / \
 | 
	
		
			
				|  |  | +                                     (df['lasttwohour_return'] + df['lastthreehour_return'] + 1)
 | 
	
		
			
				|  |  | +    df['return_retention'] = df['return_retention_initial'].apply(lambda x: 0.5 if x == 0 else x)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df['score'] = df['K2'] * df['share_rate'] * df['back_rate'] * df['log_back'] * df['return_retention']
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df = df.sort_values(by=['score'], ascending=False)
 | 
	
		
			
				|  |  | +    return df
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def cal_score_update_backrate(df, param):
 | 
	
		
			
				|  |  | +    # score计算公式: k2 * sharerate * (backrate + backrate * backrate_2 * backrate_3) * LOG(lastonehour_return+1)
 | 
	
		
			
				|  |  | +    # sharerate = lastonehour_share/(lastonehour_play+1000)
 | 
	
		
			
				|  |  | +    # backrate = lastonehour_return/(lastonehour_share+10)
 | 
	
		
			
				|  |  | +    # backrate2 = lasttwohour_return_now/(lasttwohour_share+10)
 | 
	
		
			
				|  |  | +    # backrate3 = lastthreehour_return_now/(lastthreehour_share+10)
 | 
	
		
			
				|  |  | +    # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
 | 
	
		
			
				|  |  | +    # backrate1_3_initial = backrate * backrate_2 * backrate_3
 | 
	
		
			
				|  |  | +    # backrate1_3 = 0.02 if backrate1_3_initial == 0 else backrate1_3_initial
 | 
	
		
			
				|  |  | +    # score = k2 * sharerate * (backrate + backrate1_3) * LOG(lastonehour_return+1)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df = df.fillna(0)
 | 
	
		
			
				|  |  | +    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
 | 
	
		
			
				|  |  | +    df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
 | 
	
		
			
				|  |  | +    df['back_rate2'] = df['lasttwohour_return_now'] / (df['lasttwohour_share'] + 10)
 | 
	
		
			
				|  |  | +    df['back_rate3'] = df['lastthreehour_return_now'] / (df['lastthreehour_share'] + 10)
 | 
	
		
			
				|  |  | +    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    if param.get('view_type', None) == 'video-show':
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
 | 
	
		
			
				|  |  | +    elif param.get('view_type', None) == 'video-show-region':
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
 | 
	
		
			
				|  |  | +    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df['backrate1_3_initial'] = df['back_rate'] * df['back_rate2'] * df['back_rate3']
 | 
	
		
			
				|  |  | +    df['backrate1_3'] = df['backrate1_3_initial'].apply(lambda x: 0.02 if x == 0 else x)
 | 
	
		
			
				|  |  | +    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df['score'] = df['K2'] * df['share_rate'] * (df['back_rate'] + df['backrate1_3']) * df['log_back']
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df = df.sort_values(by=['score'], ascending=False)
 | 
	
		
			
				|  |  | +    return df
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def cal_score_with_new_return(df, param):
 | 
	
		
			
				|  |  | +    # 回流数据使用 分享限制地域,回流不限制地域 统计数据
 | 
	
		
			
				|  |  | +    # score计算公式: sharerate*backrate*logback*ctr
 | 
	
		
			
				|  |  | +    # sharerate = lastonehour_share/(lastonehour_play+1000)
 | 
	
		
			
				|  |  | +    # backrate = lastonehour_return_new/(lastonehour_share+10)
 | 
	
		
			
				|  |  | +    # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
 | 
	
		
			
				|  |  | +    # score = sharerate * backrate * LOG(lastonehour_return_new+1) * K2
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df = df.fillna(0)
 | 
	
		
			
				|  |  | +    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
 | 
	
		
			
				|  |  | +    df['back_rate'] = df['lastonehour_return_new'] / (df['lastonehour_share'] + 10)
 | 
	
		
			
				|  |  | +    df['log_back'] = (df['lastonehour_return_new'] + 1).apply(math.log)
 | 
	
		
			
				|  |  | +    if param.get('view_type', None) == 'video-show':
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
 | 
	
		
			
				|  |  | +    elif param.get('view_type', None) == 'video-show-region':
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
 | 
	
		
			
				|  |  | +    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
 | 
	
		
			
				|  |  | +    df['platform_return_rate'] = df['platform_return_new'] / df['lastonehour_return_new']
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df = df.sort_values(by=['score'], ascending=False)
 | 
	
		
			
				|  |  | +    return df
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def cal_score_multiply_return_retention_with_new_return(df, param):
 | 
	
		
			
				|  |  | +    # 回流数据使用 分享限制地域,回流不限制地域 统计数据
 | 
	
		
			
				|  |  | +    # score计算公式: k2 * sharerate * backrate * LOG(lastonehour_return_new+1) * 前两小时回流留存
 | 
	
		
			
				|  |  | +    # sharerate = lastonehour_share/(lastonehour_play+1000)
 | 
	
		
			
				|  |  | +    # backrate = lastonehour_return_new/(lastonehour_share+10)
 | 
	
		
			
				|  |  | +    # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
 | 
	
		
			
				|  |  | +    # 前两小时回流留存 return_retention_initial = (lasttwohour_return_now_new + lastthreehour_return_now_new)/(lasttwohour_return_new + lastthreehour_return_new + 1)
 | 
	
		
			
				|  |  | +    # return_retention = 0.5 if return_retention_initial == 0 else return_retention_initial
 | 
	
		
			
				|  |  | +    # score = k2 * sharerate * backrate * LOG(lastonehour_return_new+1) * return_retention
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df = df.fillna(0)
 | 
	
		
			
				|  |  | +    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
 | 
	
		
			
				|  |  | +    df['back_rate'] = df['lastonehour_return_new'] / (df['lastonehour_share'] + 10)
 | 
	
		
			
				|  |  | +    df['log_back'] = (df['lastonehour_return_new'] + 1).apply(math.log)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    if param.get('view_type', None) == 'video-show':
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
 | 
	
		
			
				|  |  | +    elif param.get('view_type', None) == 'video-show-region':
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
 | 
	
		
			
				|  |  | +    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df['return_retention_initial'] = (df['lasttwohour_return_now_new'] + df['lastthreehour_return_now_new']) / \
 | 
	
		
			
				|  |  | +                                     (df['lasttwohour_return_new'] + df['lastthreehour_return_new'] + 1)
 | 
	
		
			
				|  |  | +    df['return_retention'] = df['return_retention_initial'].apply(lambda x: 0.5 if x == 0 else x)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df['platform_return_rate'] = df['platform_return_new'] / df['lastonehour_return_new']
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df['score'] = df['K2'] * df['share_rate'] * df['back_rate'] * df['log_back'] * df['return_retention']
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df = df.sort_values(by=['score'], ascending=False)
 | 
	
		
			
				|  |  | +    return df
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def cal_score_with_back_view0(df, param):
 | 
	
		
			
				|  |  | +    # score = sharerate*backrate*log(return+1)*CTR,
 | 
	
		
			
				|  |  | +    # sharerate=(lastonehour_share+1)/(lastonehour_play+1000)
 | 
	
		
			
				|  |  | +    # backrate=(lastonehour_return+1)/(lastonehour_share+10)
 | 
	
		
			
				|  |  | +    # CTR=(lastonehour_play+1)/(lastonehour_view+100), ctr不进行校正
 | 
	
		
			
				|  |  | +    df = df.fillna(0)
 | 
	
		
			
				|  |  | +    df['share_rate'] = (df['lastonehour_share'] + 1) / (df['lastonehour_play'] + 1000)
 | 
	
		
			
				|  |  | +    df['back_rate'] = (df['lastonehour_return'] + 1) / (df['lastonehour_share'] + 10)
 | 
	
		
			
				|  |  | +    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
 | 
	
		
			
				|  |  | +    df['ctr'] = (df['lastonehour_play'] + 1) / (df['lastonehour_view'] + 100)
 | 
	
		
			
				|  |  | +    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
 | 
	
		
			
				|  |  | +    df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['ctr']
 | 
	
		
			
				|  |  | +    df = df.sort_values(by=['score'], ascending=False)
 | 
	
		
			
				|  |  | +    return df
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def cal_score_with_back_view1(df, param):
 | 
	
		
			
				|  |  | +    # score = back_play_rate*log(return+1)*CTR,
 | 
	
		
			
				|  |  | +    # back_play_rate=(lastonehour_return+1)/(lastonehour_play+1000)
 | 
	
		
			
				|  |  | +    # CTR=(lastonehour_play+1)/(lastonehour_view+100), ctr不进行校正
 | 
	
		
			
				|  |  | +    df = df.fillna(0)
 | 
	
		
			
				|  |  | +    df['back_play_rate'] = (df['lastonehour_return'] + 1) / (df['lastonehour_play'] + 1000)
 | 
	
		
			
				|  |  | +    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
 | 
	
		
			
				|  |  | +    df['ctr'] = (df['lastonehour_play'] + 1) / (df['lastonehour_view'] + 100)
 | 
	
		
			
				|  |  | +    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
 | 
	
		
			
				|  |  | +    df['score'] = df['back_play_rate'] * df['log_back'] * df['ctr']
 | 
	
		
			
				|  |  | +    df = df.sort_values(by=['score'], ascending=False)
 | 
	
		
			
				|  |  | +    return df
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def cal_score_with_back_rate_exponential_weighting1(df, param):
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    计算score
 | 
	
		
			
				|  |  | +    :param df: 特征数据
 | 
	
		
			
				|  |  | +    :param param: 规则参数
 | 
	
		
			
				|  |  | +    :return:
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    # score计算公式: score = sharerate * backrate ^ 2 * LOG(lastonehour_return + 1) * K2
 | 
	
		
			
				|  |  | +    # sharerate = lastonehour_share / (lastonehour_play + 1000)
 | 
	
		
			
				|  |  | +    # backrate = lastonehour_return / (lastonehour_share + 10)
 | 
	
		
			
				|  |  | +    # ctr = lastonehour_play / (lastonehour_show + 1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df = df.fillna(0)
 | 
	
		
			
				|  |  | +    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
 | 
	
		
			
				|  |  | +    df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
 | 
	
		
			
				|  |  | +    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
 | 
	
		
			
				|  |  | +    if param.get('view_type', None) == 'video-show':
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
 | 
	
		
			
				|  |  | +    elif param.get('view_type', None) == 'video-show-region':
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
 | 
	
		
			
				|  |  | +    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df['score'] = df['share_rate'] * df['back_rate'] ** 2 * df['log_back'] * df['K2']
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df = df.sort_values(by=['score'], ascending=False)
 | 
	
		
			
				|  |  | +    return df
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def cal_score_with_back_rate_exponential_weighting2(df, param):
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    计算score
 | 
	
		
			
				|  |  | +    :param df: 特征数据
 | 
	
		
			
				|  |  | +    :param param: 规则参数
 | 
	
		
			
				|  |  | +    :return:
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    # score计算公式: score = sharerate ^ 0.5 * backrate ^ 2 * LOG(lastonehour_return + 1) * K2 ^ 0.5
 | 
	
		
			
				|  |  | +    # sharerate = lastonehour_share / (lastonehour_play + 1000)
 | 
	
		
			
				|  |  | +    # backrate = lastonehour_return / (lastonehour_share + 10)
 | 
	
		
			
				|  |  | +    # ctr = lastonehour_play / (lastonehour_show + 1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df = df.fillna(0)
 | 
	
		
			
				|  |  | +    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
 | 
	
		
			
				|  |  | +    df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
 | 
	
		
			
				|  |  | +    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
 | 
	
		
			
				|  |  | +    if param.get('view_type', None) == 'video-show':
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
 | 
	
		
			
				|  |  | +    elif param.get('view_type', None) == 'video-show-region':
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
 | 
	
		
			
				|  |  | +    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df['score'] = df['share_rate'] ** 0.5 * df['back_rate'] ** 2 * df['log_back'] * df['K2'] ** 0.5
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df = df.sort_values(by=['score'], ascending=False)
 | 
	
		
			
				|  |  | +    return df
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def cal_score_with_back_rate_by_rank_weighting(df, param):
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    add by sunmingze 20231123
 | 
	
		
			
				|  |  | +    计算score
 | 
	
		
			
				|  |  | +    :param df: 特征数据
 | 
	
		
			
				|  |  | +    :param param: 规则参数
 | 
	
		
			
				|  |  | +    :return:
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    # score计算公式: score =  1 / sharerate(rank)^0.5 + 5 / backrate(rank)^0.5 + 10 / LOG(lastonehour_return +1)(rank) ^0.5
 | 
	
		
			
				|  |  | +    #   +  1 / K2(rank)^0.5
 | 
	
		
			
				|  |  | +    # sharerate = lastonehour_share / (lastonehour_play + 1000)
 | 
	
		
			
				|  |  | +    # backrate = lastonehour_return / (lastonehour_share + 10)
 | 
	
		
			
				|  |  | +    # ctr = lastonehour_play / (lastonehour_show + 1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df = df.fillna(0)
 | 
	
		
			
				|  |  | +    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
 | 
	
		
			
				|  |  | +    df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
 | 
	
		
			
				|  |  | +    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
 | 
	
		
			
				|  |  | +    if param.get('view_type', None) == 'video-show':
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
 | 
	
		
			
				|  |  | +    elif param.get('view_type', None) == 'video-show-region':
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
 | 
	
		
			
				|  |  | +    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # 分别的得到sharerate、backrate、K值、return人数的序关系
 | 
	
		
			
				|  |  | +    df['rank_by_sharerate'] = df['share_rate'].rank(ascending=0, method='dense')
 | 
	
		
			
				|  |  | +    df['rank_by_backrate'] = df['back_rate'].rank(ascending=0, method='dense')
 | 
	
		
			
				|  |  | +    df['rank_by_K2'] = df['K2'].rank(ascending=0, method='dense')
 | 
	
		
			
				|  |  | +    df['rank_by_logback'] = df['log_back'].rank(ascending=0, method='dense')
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # 计算基于序的加法关系函数
 | 
	
		
			
				|  |  | +    df['score'] = 1/(df['rank_by_sharerate'] + 10) + 5/(df['rank_by_backrate'] + 10)
 | 
	
		
			
				|  |  | +    df['score'] = df['score'] + 5/(df['rank_by_logback'] + 10) + 1/(df['rank_by_K2'] + 10)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df = df.sort_values(by=['score'], ascending=False)
 | 
	
		
			
				|  |  | +    return df
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def cal_score(df, param):
 | 
	
		
			
				|  |  | +    if param.get('return_data', None) == 'share_region_return':
 | 
	
		
			
				|  |  | +        if param.get('score_func', None) == 'multiply_return_retention':
 | 
	
		
			
				|  |  | +            df = cal_score_multiply_return_retention_with_new_return(df=df, param=param)
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            df = cal_score_with_new_return(df=df, param=param)
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        if param.get('score_func', None) == 'add_backrate*log(return+1)':
 | 
	
		
			
				|  |  | +            df = cal_score_add_return(df=df, param=param)
 | 
	
		
			
				|  |  | +        elif param.get('score_func', None) == 'multiply_return_retention':
 | 
	
		
			
				|  |  | +            df = cal_score_multiply_return_retention(df=df, param=param)
 | 
	
		
			
				|  |  | +        elif param.get('score_func', None) == 'update_backrate':
 | 
	
		
			
				|  |  | +            df = cal_score_update_backrate(df=df, param=param)
 | 
	
		
			
				|  |  | +        elif param.get('score_func', None) == 'back_view0':
 | 
	
		
			
				|  |  | +            df = cal_score_with_back_view0(df=df, param=param)
 | 
	
		
			
				|  |  | +        elif param.get('score_func', None) == 'back_view1':
 | 
	
		
			
				|  |  | +            df = cal_score_with_back_view1(df=df, param=param)
 | 
	
		
			
				|  |  | +        elif param.get('score_func', None) == 'back_rate_exponential_weighting1':
 | 
	
		
			
				|  |  | +            df = cal_score_with_back_rate_exponential_weighting1(df=df, param=param)
 | 
	
		
			
				|  |  | +        elif param.get('score_func', None) == 'back_rate_exponential_weighting2':
 | 
	
		
			
				|  |  | +            df = cal_score_with_back_rate_exponential_weighting2(df=df, param=param)
 | 
	
		
			
				|  |  | +        elif param.get('score_func', None) == 'back_rate_rank_weighting':
 | 
	
		
			
				|  |  | +            df = cal_score_with_back_rate_by_rank_weighting(df=df, param=param)
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            df = cal_score_initial(df=df, param=param)
 | 
	
		
			
				|  |  | +    return df
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def add_func1(initial_df, pre_h_df):
 | 
	
		
			
				|  |  | +    """当前小时级数据与前几个小时数据合并"""
 | 
	
		
			
				|  |  | +    score_list = initial_df['score'].to_list()
 | 
	
		
			
				|  |  | +    if len(score_list) > 0:
 | 
	
		
			
				|  |  | +        min_score = min(score_list)
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        min_score = 0
 | 
	
		
			
				|  |  | +    pre_h_df = pre_h_df[pre_h_df['score'] > min_score]
 | 
	
		
			
				|  |  | +    df = pd.concat([initial_df, pre_h_df], ignore_index=True)
 | 
	
		
			
				|  |  | +    # videoid去重,保留分值高
 | 
	
		
			
				|  |  | +    df['videoid'] = df['videoid'].astype(int)
 | 
	
		
			
				|  |  | +    df = df.sort_values(by=['score'], ascending=False)
 | 
	
		
			
				|  |  | +    df = df.drop_duplicates(subset=['videoid'], keep="first")
 | 
	
		
			
				|  |  | +    return df
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def add_func2(initial_df, pre_h_df):
 | 
	
		
			
				|  |  | +    """当前小时级数据与前几个小时数据合并: 当前小时存在的视频以当前小时为准,否则以高分为主"""
 | 
	
		
			
				|  |  | +    score_list = initial_df['score'].to_list()
 | 
	
		
			
				|  |  | +    if len(score_list) > 0:
 | 
	
		
			
				|  |  | +        min_score = min(score_list)
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        min_score = 0
 | 
	
		
			
				|  |  | +    initial_video_id_list = initial_df['videoid'].to_list()
 | 
	
		
			
				|  |  | +    pre_h_df = pre_h_df[pre_h_df['score'] > min_score]
 | 
	
		
			
				|  |  | +    pre_h_df = pre_h_df[~pre_h_df['videoid'].isin(initial_video_id_list)]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    df = pd.concat([initial_df, pre_h_df], ignore_index=True)
 | 
	
		
			
				|  |  | +    # videoid去重,保留分值高
 | 
	
		
			
				|  |  | +    df['videoid'] = df['videoid'].astype(int)
 | 
	
		
			
				|  |  | +    df = df.sort_values(by=['score'], ascending=False)
 | 
	
		
			
				|  |  | +    df = df.drop_duplicates(subset=['videoid'], keep="first")
 | 
	
		
			
				|  |  | +    return df
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def add_videos(initial_df, now_date, rule_key, region, data_key, hour_count, top, add_func):
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    地域小时级数据列表中增加前6h优质视频
 | 
	
		
			
				|  |  | +    :param initial_df: 地域小时级筛选结果
 | 
	
		
			
				|  |  | +    :param now_date:
 | 
	
		
			
				|  |  | +    :param data_key:
 | 
	
		
			
				|  |  | +    :param region:
 | 
	
		
			
				|  |  | +    :param rule_key:
 | 
	
		
			
				|  |  | +    :param hour_count: 前几个小时, type-int
 | 
	
		
			
				|  |  | +    :param top: type-int
 | 
	
		
			
				|  |  | +    :return: df
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    redis_helper = RedisHelper()
 | 
	
		
			
				|  |  | +    pre_h_data = []
 | 
	
		
			
				|  |  | +    for i in range(1, hour_count+1):
 | 
	
		
			
				|  |  | +        pre_date = now_date - datetime.timedelta(hours=i)
 | 
	
		
			
				|  |  | +        pre_h = pre_date.hour
 | 
	
		
			
				|  |  | +        pre_h_recall_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H}{region}:{data_key}:{rule_key}:" \
 | 
	
		
			
				|  |  | +                                f"{datetime.datetime.strftime(pre_date, '%Y%m%d')}:{pre_h}"
 | 
	
		
			
				|  |  | +        pre_h_top_data = redis_helper.get_data_zset_with_index(key_name=pre_h_recall_key_name,
 | 
	
		
			
				|  |  | +                                                               start=0, end=top-1,
 | 
	
		
			
				|  |  | +                                                               desc=True, with_scores=True)
 | 
	
		
			
				|  |  | +        if pre_h_top_data is None:
 | 
	
		
			
				|  |  | +            continue
 | 
	
		
			
				|  |  | +        pre_h_data.extend(pre_h_top_data)
 | 
	
		
			
				|  |  | +    pre_h_df = pd.DataFrame(data=pre_h_data, columns=['videoid', 'score'])
 | 
	
		
			
				|  |  | +    if add_func == 'func2':
 | 
	
		
			
				|  |  | +        df = add_func2(initial_df=initial_df, pre_h_df=pre_h_df)
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        df = add_func1(initial_df=initial_df, pre_h_df=pre_h_df)
 | 
	
		
			
				|  |  | +    return df
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def video_rank(df, now_date, now_h, rule_key, param, region, data_key, rule_rank_h_flag,
 | 
	
		
			
				|  |  | +               add_videos_with_pre_h=False, hour_count=0):
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
 | 
	
		
			
				|  |  | +    :param df:
 | 
	
		
			
				|  |  | +    :param now_date:
 | 
	
		
			
				|  |  | +    :param now_h:
 | 
	
		
			
				|  |  | +    :param rule_key: 小时级数据进入条件
 | 
	
		
			
				|  |  | +    :param param: 小时级数据进入条件参数
 | 
	
		
			
				|  |  | +    :param region: 所属地域
 | 
	
		
			
				|  |  | +    :return:
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    redis_helper = RedisHelper()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005
 | 
	
		
			
				|  |  | +    return_count = param.get('return_count', 1)
 | 
	
		
			
				|  |  | +    score_value = param.get('score_rule', 0)
 | 
	
		
			
				|  |  | +    platform_return_rate = param.get('platform_return_rate', 0)
 | 
	
		
			
				|  |  | +    h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value)
 | 
	
		
			
				|  |  | +                     & (df['platform_return_rate'] >= platform_return_rate)]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # videoid重复时,保留分值高
 | 
	
		
			
				|  |  | +    h_recall_df = h_recall_df.sort_values(by=['score'], ascending=False)
 | 
	
		
			
				|  |  | +    h_recall_df = h_recall_df.drop_duplicates(subset=['videoid'], keep='first')
 | 
	
		
			
				|  |  | +    h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    log_.info(f"各种规则过滤后,一共有多少个视频 = {len(h_recall_df)}")
 | 
	
		
			
				|  |  | +    # 增加打捞的优质视频
 | 
	
		
			
				|  |  | +    if add_videos_with_pre_h is True:
 | 
	
		
			
				|  |  | +        add_func = param.get('add_func', None)
 | 
	
		
			
				|  |  | +        h_recall_df = add_videos(initial_df=h_recall_df, now_date=now_date, rule_key=rule_key,
 | 
	
		
			
				|  |  | +                                 region=region, data_key=data_key, hour_count=hour_count, top=10, add_func=add_func)
 | 
	
		
			
				|  |  | +        log_.info(f"打捞优质视频完成")
 | 
	
		
			
				|  |  | +    h_recall_videos = h_recall_df['videoid'].to_list()
 | 
	
		
			
				|  |  | +    log_.info(f"各种规则增加后,一共有多少个视频 = {len(h_recall_videos)}")
 | 
	
		
			
				|  |  | +    # 视频状态过滤
 | 
	
		
			
				|  |  | +    if data_key in ['data7', ]:
 | 
	
		
			
				|  |  | +        filtered_videos = filter_video_status_app(h_recall_videos)
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        filtered_videos = filter_video_status(h_recall_videos)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # 屏蔽视频过滤
 | 
	
		
			
				|  |  | +    shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
 | 
	
		
			
				|  |  | +    shield_key_name_list = shield_config.get(region, None)
 | 
	
		
			
				|  |  | +    if shield_key_name_list is not None:
 | 
	
		
			
				|  |  | +        filtered_videos = filter_shield_video(video_ids=filtered_videos, shield_key_name_list=shield_key_name_list)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # 涉政视频过滤
 | 
	
		
			
				|  |  | +    political_filter = param.get('political_filter', None)
 | 
	
		
			
				|  |  | +    if political_filter is True:
 | 
	
		
			
				|  |  | +        filtered_videos = filter_political_videos(video_ids=filtered_videos)
 | 
	
		
			
				|  |  | +    log_.info(f"视频状态-涉政等-过滤后,一共有多少个视频 = {len(filtered_videos)}")
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    h_video_ids = []
 | 
	
		
			
				|  |  | +    by_30day_rule_key = param.get('30day_rule_key', None)
 | 
	
		
			
				|  |  | +    if by_30day_rule_key is not None:
 | 
	
		
			
				|  |  | +        # 与相对30天列表去重
 | 
	
		
			
				|  |  | +        h_video_ids = get_day_30day_videos(now_date=now_date, data_key=data_key, rule_key=by_30day_rule_key)
 | 
	
		
			
				|  |  | +        if h_video_ids is not None:
 | 
	
		
			
				|  |  | +            filtered_videos = [video_id for video_id in filtered_videos if int(video_id) not in h_video_ids]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # 写入对应的redis
 | 
	
		
			
				|  |  | +    h_recall_result = {}
 | 
	
		
			
				|  |  | +    for video_id in filtered_videos:
 | 
	
		
			
				|  |  | +        score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
 | 
	
		
			
				|  |  | +        h_recall_result[int(video_id)] = float(score)
 | 
	
		
			
				|  |  | +        h_video_ids.append(int(video_id))
 | 
	
		
			
				|  |  | +    h_recall_key_name = \
 | 
	
		
			
				|  |  | +        f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H}{region}:{data_key}:{rule_key}:" \
 | 
	
		
			
				|  |  | +        f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
 | 
	
		
			
				|  |  | +    log_.info("打印地域1小时的某个地域{},redis key:{}".format(region, h_recall_key_name))
 | 
	
		
			
				|  |  | +    if len(h_recall_result) > 0:
 | 
	
		
			
				|  |  | +        log_.info(f"开始写入头部数据:count = {len(h_recall_result)}, key = {h_recall_key_name}")
 | 
	
		
			
				|  |  | +        redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=2 * 24 * 3600)
 | 
	
		
			
				|  |  | +        # 限流视频score调整
 | 
	
		
			
				|  |  | +        tmp = update_limit_video_score(initial_videos=h_recall_result, key_name=h_recall_key_name)
 | 
	
		
			
				|  |  | +        if tmp:
 | 
	
		
			
				|  |  | +            log_.info(f"走了限流逻辑后:count = {len(h_recall_result)}, key = {h_recall_key_name}")
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            log_.info("走了限流逻辑,但没更改redis,未生效。")
 | 
	
		
			
				|  |  | +        # 清空线上过滤应用列表
 | 
	
		
			
				|  |  | +        # redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER}{region}.{app_type}.{data_key}.{rule_key}")
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        log_.info(f"无数据,不写入。")
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # h_rule_key = param.get('h_rule_key', None)
 | 
	
		
			
				|  |  | +    # region_24h_rule_key = param.get('region_24h_rule_key', 'rule1')
 | 
	
		
			
				|  |  | +    # by_24h_rule_key = param.get('24h_rule_key', None)
 | 
	
		
			
				|  |  | +    # by_48h_rule_key = param.get('48h_rule_key', None)
 | 
	
		
			
				|  |  | +    # dup_remove = param.get('dup_remove', True)
 | 
	
		
			
				|  |  | +    # # 与其他召回视频池去重,存入对应的redis
 | 
	
		
			
				|  |  | +    # dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, h_rule_key=h_rule_key,
 | 
	
		
			
				|  |  | +    #              region_24h_rule_key=region_24h_rule_key, by_24h_rule_key=by_24h_rule_key,
 | 
	
		
			
				|  |  | +    #              by_48h_rule_key=by_48h_rule_key, region=region, data_key=data_key,
 | 
	
		
			
				|  |  | +    #              rule_rank_h_flag=rule_rank_h_flag, political_filter=political_filter,
 | 
	
		
			
				|  |  | +    #              shield_config=shield_config, dup_remove=dup_remove)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def dup_data(h_video_ids, initial_key_name, dup_key_name, region, political_filter, shield_config, dup_remove):
 | 
	
		
			
				|  |  | +    redis_helper = RedisHelper()
 | 
	
		
			
				|  |  | +    if redis_helper.key_exists(key_name=initial_key_name):
 | 
	
		
			
				|  |  | +        initial_data = redis_helper.get_all_data_from_zset(key_name=initial_key_name, with_scores=True)
 | 
	
		
			
				|  |  | +        # 屏蔽视频过滤
 | 
	
		
			
				|  |  | +        initial_video_ids = [int(video_id) for video_id, _ in initial_data]
 | 
	
		
			
				|  |  | +        shield_key_name_list = shield_config.get(region, None)
 | 
	
		
			
				|  |  | +        if shield_key_name_list is not None:
 | 
	
		
			
				|  |  | +            initial_video_ids = filter_shield_video(video_ids=initial_video_ids,
 | 
	
		
			
				|  |  | +                                                    shield_key_name_list=shield_key_name_list)
 | 
	
		
			
				|  |  | +        # 涉政视频过滤
 | 
	
		
			
				|  |  | +        if political_filter is True:
 | 
	
		
			
				|  |  | +            initial_video_ids = filter_political_videos(video_ids=initial_video_ids)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        dup_data = {}
 | 
	
		
			
				|  |  | +        # 视频去重逻辑
 | 
	
		
			
				|  |  | +        if dup_remove is True:
 | 
	
		
			
				|  |  | +            for video_id, score in initial_data:
 | 
	
		
			
				|  |  | +                if int(video_id) not in h_video_ids and int(video_id) in initial_video_ids:
 | 
	
		
			
				|  |  | +                    dup_data[int(video_id)] = score
 | 
	
		
			
				|  |  | +                    h_video_ids.append(int(video_id))
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            for video_id, score in initial_data:
 | 
	
		
			
				|  |  | +                if int(video_id) in initial_video_ids:
 | 
	
		
			
				|  |  | +                    dup_data[int(video_id)] = score
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        if len(dup_data) > 0:
 | 
	
		
			
				|  |  | +            redis_helper.add_data_with_zset(key_name=dup_key_name, data=dup_data, expire_time=2 * 24 * 3600)
 | 
	
		
			
				|  |  | +            # 限流视频score调整
 | 
	
		
			
				|  |  | +            update_limit_video_score(initial_videos=dup_data, key_name=dup_key_name)
 | 
	
		
			
				|  |  | +    return h_video_ids
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def dup_to_redis(h_video_ids, now_date, now_h, rule_key, h_rule_key, region_24h_rule_key, by_24h_rule_key, by_48h_rule_key,
 | 
	
		
			
				|  |  | +                 region, data_key, rule_rank_h_flag, political_filter, shield_config, dup_remove):
 | 
	
		
			
				|  |  | +    """将地域分组小时级数据与其他召回视频池去重,存入对应的redis"""
 | 
	
		
			
				|  |  | +    # ##### 去重更新不区分地域小时级列表,并另存为redis中
 | 
	
		
			
				|  |  | +    if h_rule_key is not None:
 | 
	
		
			
				|  |  | +        h_key_name = \
 | 
	
		
			
				|  |  | +            f"{config_.RECALL_KEY_NAME_PREFIX_BY_H_H}{data_key}:{h_rule_key}:" \
 | 
	
		
			
				|  |  | +            f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
 | 
	
		
			
				|  |  | +        h_dup_key_name = \
 | 
	
		
			
				|  |  | +            f"{config_.RECALL_KEY_NAME_PREFIX_DUP_H_H}{region}:{data_key}:{rule_key}:" \
 | 
	
		
			
				|  |  | +            f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
 | 
	
		
			
				|  |  | +        h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_key_name,
 | 
	
		
			
				|  |  | +                               dup_key_name=h_dup_key_name, region=region, political_filter=political_filter,
 | 
	
		
			
				|  |  | +                               shield_config=shield_config, dup_remove=dup_remove)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # ##### 去重更新地域分组小时级24h列表,并另存为redis中
 | 
	
		
			
				|  |  | +    region_24h_key_name = \
 | 
	
		
			
				|  |  | +        f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H}{region}:{data_key}:{region_24h_rule_key}:" \
 | 
	
		
			
				|  |  | +        f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
 | 
	
		
			
				|  |  | +    region_24h_dup_key_name = \
 | 
	
		
			
				|  |  | +        f"{config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
 | 
	
		
			
				|  |  | +        f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
 | 
	
		
			
				|  |  | +    h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=region_24h_key_name,
 | 
	
		
			
				|  |  | +                           dup_key_name=region_24h_dup_key_name, region=region, political_filter=political_filter,
 | 
	
		
			
				|  |  | +                           shield_config=shield_config, dup_remove=dup_remove)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    if rule_rank_h_flag == '48h':
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        # ##### 去重小程序相对48h更新结果,并另存为redis中
 | 
	
		
			
				|  |  | +        h_48h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_48H}{data_key}:{by_48h_rule_key}:" \
 | 
	
		
			
				|  |  | +                         f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
 | 
	
		
			
				|  |  | +        h_48h_dup_key_name = \
 | 
	
		
			
				|  |  | +            f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_48H_H}{region}:{data_key}:{rule_key}:" \
 | 
	
		
			
				|  |  | +            f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
 | 
	
		
			
				|  |  | +        h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_48h_key_name,
 | 
	
		
			
				|  |  | +                               dup_key_name=h_48h_dup_key_name, region=region, political_filter=political_filter,
 | 
	
		
			
				|  |  | +                               shield_config=shield_config, dup_remove=dup_remove)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        # ##### 去重小程序相对48h 筛选后剩余数据 更新结果,并另存为redis中
 | 
	
		
			
				|  |  | +        if by_48h_rule_key == 'rule1':
 | 
	
		
			
				|  |  | +            other_h_48h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_48H_OTHER}{data_key}:" \
 | 
	
		
			
				|  |  | +                                   f"{by_48h_rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
 | 
	
		
			
				|  |  | +            other_h_48h_dup_key_name = \
 | 
	
		
			
				|  |  | +                f"{config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_48H_H}{region}:{data_key}:{rule_key}:" \
 | 
	
		
			
				|  |  | +                f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
 | 
	
		
			
				|  |  | +            h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=other_h_48h_key_name,
 | 
	
		
			
				|  |  | +                                   dup_key_name=other_h_48h_dup_key_name, region=region,
 | 
	
		
			
				|  |  | +                                   political_filter=political_filter, shield_config=shield_config,
 | 
	
		
			
				|  |  | +                                   dup_remove=dup_remove)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        # ##### 去重小程序相对24h更新结果,并另存为redis中
 | 
	
		
			
				|  |  | +        h_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}{data_key}:{by_24h_rule_key}:" \
 | 
	
		
			
				|  |  | +                         f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
 | 
	
		
			
				|  |  | +        h_24h_dup_key_name = \
 | 
	
		
			
				|  |  | +            f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
 | 
	
		
			
				|  |  | +            f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
 | 
	
		
			
				|  |  | +        h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_24h_key_name,
 | 
	
		
			
				|  |  | +                               dup_key_name=h_24h_dup_key_name, region=region, political_filter=political_filter,
 | 
	
		
			
				|  |  | +                               shield_config=shield_config, dup_remove=dup_remove)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        # ##### 去重小程序相对24h 筛选后剩余数据 更新结果,并另存为redis中
 | 
	
		
			
				|  |  | +        # if by_24h_rule_key in ['rule3', 'rule4']:
 | 
	
		
			
				|  |  | +        other_h_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H_OTHER}{data_key}:" \
 | 
	
		
			
				|  |  | +                               f"{by_24h_rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
 | 
	
		
			
				|  |  | +        other_h_24h_dup_key_name = \
 | 
	
		
			
				|  |  | +            f"{config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
 | 
	
		
			
				|  |  | +            f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
 | 
	
		
			
				|  |  | +        h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=other_h_24h_key_name,
 | 
	
		
			
				|  |  | +                               dup_key_name=other_h_24h_dup_key_name, region=region, political_filter=political_filter,
 | 
	
		
			
				|  |  | +                               shield_config=shield_config, dup_remove=dup_remove)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # ##### 去重小程序模型更新结果,并另存为redis中
 | 
	
		
			
				|  |  | +    # model_key_name = get_rov_redis_key(now_date=now_date)
 | 
	
		
			
				|  |  | +    # model_data_dup_key_name = \
 | 
	
		
			
				|  |  | +    #     f"{config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_H}{region}:{data_key}:{rule_key}:" \
 | 
	
		
			
				|  |  | +    #     f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
 | 
	
		
			
				|  |  | +    # h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=model_key_name,
 | 
	
		
			
				|  |  | +    #                        dup_key_name=model_data_dup_key_name, region=region)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def merge_df(df_left, df_right):
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    df按照videoid, code 合并,对应特征求和
 | 
	
		
			
				|  |  | +    :param df_left:
 | 
	
		
			
				|  |  | +    :param df_right:
 | 
	
		
			
				|  |  | +    :return:
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    df_merged = pd.merge(df_left, df_right, on=['videoid', 'code'], how='outer', suffixes=['_x', '_y'])
 | 
	
		
			
				|  |  | +    df_merged.fillna(0, inplace=True)
 | 
	
		
			
				|  |  | +    feature_list = ['videoid', 'code']
 | 
	
		
			
				|  |  | +    for feature in features:
 | 
	
		
			
				|  |  | +        if feature in ['apptype', 'videoid', 'code']:
 | 
	
		
			
				|  |  | +            continue
 | 
	
		
			
				|  |  | +        df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
 | 
	
		
			
				|  |  | +        feature_list.append(feature)
 | 
	
		
			
				|  |  | +    return df_merged[feature_list]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def merge_df_with_score(df_left, df_right):
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    df 按照[videoid, code]合并,平台回流人数、回流人数、分数 分别求和
 | 
	
		
			
				|  |  | +    :param df_left:
 | 
	
		
			
				|  |  | +    :param df_right:
 | 
	
		
			
				|  |  | +    :return:
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    df_merged = pd.merge(df_left, df_right, on=['videoid', 'code'], how='outer', suffixes=['_x', '_y'])
 | 
	
		
			
				|  |  | +    df_merged.fillna(0, inplace=True)
 | 
	
		
			
				|  |  | +    feature_list = ['videoid', 'code', 'lastonehour_return', 'platform_return', 'score']
 | 
	
		
			
				|  |  | +    for feature in feature_list[2:]:
 | 
	
		
			
				|  |  | +        df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
 | 
	
		
			
				|  |  | +    return df_merged[feature_list]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def process_with_region(region, df_merged, data_key, rule_key, rule_param, now_date, now_h,
 | 
	
		
			
				|  |  | +                        rule_rank_h_flag, add_videos_with_pre_h, hour_count):
 | 
	
		
			
				|  |  | +    log_.info(f"多协程的region = {region} 开始执行")
 | 
	
		
			
				|  |  | +    region_df = df_merged[df_merged['code'] == region]
 | 
	
		
			
				|  |  | +    log_.info(f'该区域region = {region}, 下有多少数据量 = {len(region_df)}')
 | 
	
		
			
				|  |  | +    score_df = cal_score(df=region_df, param=rule_param)
 | 
	
		
			
				|  |  | +    video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=rule_key, param=rule_param,
 | 
	
		
			
				|  |  | +               region=region, data_key=data_key, rule_rank_h_flag=rule_rank_h_flag,
 | 
	
		
			
				|  |  | +               add_videos_with_pre_h=add_videos_with_pre_h, hour_count=hour_count)
 | 
	
		
			
				|  |  | +    log_.info(f"多协程的region = {region} 完成执行")
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def process_with_region2(region, df_merged, data_key, rule_key, rule_param, now_date, now_h,
 | 
	
		
			
				|  |  | +                         rule_rank_h_flag, add_videos_with_pre_h, hour_count):
 | 
	
		
			
				|  |  | +    log_.info(f"region = {region} start...")
 | 
	
		
			
				|  |  | +    region_score_df = df_merged[df_merged['code'] == region]
 | 
	
		
			
				|  |  | +    log_.info(f'region = {region}, region_score_df count = {len(region_score_df)}')
 | 
	
		
			
				|  |  | +    video_rank(df=region_score_df, now_date=now_date, now_h=now_h, region=region,
 | 
	
		
			
				|  |  | +               rule_key=rule_key, param=rule_param, data_key=data_key, rule_rank_h_flag=rule_rank_h_flag,
 | 
	
		
			
				|  |  | +               add_videos_with_pre_h=add_videos_with_pre_h, hour_count=hour_count)
 | 
	
		
			
				|  |  | +    log_.info(f"region = {region} end!")
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def process_with_app_type(app_type, params, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag):
 | 
	
		
			
				|  |  | +    log_.info(f"app_type = {app_type} start...")
 | 
	
		
			
				|  |  | +    data_params_item = params.get('data_params')
 | 
	
		
			
				|  |  | +    rule_params_item = params.get('rule_params')
 | 
	
		
			
				|  |  | +    task_list = []
 | 
	
		
			
				|  |  | +    for param in params.get('params_list'):
 | 
	
		
			
				|  |  | +        data_key = param.get('data')
 | 
	
		
			
				|  |  | +        data_param = data_params_item.get(data_key)
 | 
	
		
			
				|  |  | +        log_.info(f"data_key = {data_key}, data_param = {data_param}")
 | 
	
		
			
				|  |  | +        df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
 | 
	
		
			
				|  |  | +        df_merged = reduce(merge_df, df_list)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        rule_key = param.get('rule')
 | 
	
		
			
				|  |  | +        rule_param = rule_params_item.get(rule_key)
 | 
	
		
			
				|  |  | +        log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
 | 
	
		
			
				|  |  | +        task_list.extend(
 | 
	
		
			
				|  |  | +            [
 | 
	
		
			
				|  |  | +                gevent.spawn(process_with_region, region, df_merged, app_type, data_key, rule_key, rule_param,
 | 
	
		
			
				|  |  | +                             now_date, now_h, rule_rank_h_flag)
 | 
	
		
			
				|  |  | +                for region in region_code_list
 | 
	
		
			
				|  |  | +            ]
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +    gevent.joinall(task_list)
 | 
	
		
			
				|  |  | +    log_.info(f"app_type = {app_type} end!")
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # log_.info(f"app_type = {app_type}")
 | 
	
		
			
				|  |  | +    # task_list = []
 | 
	
		
			
				|  |  | +    # for data_key, data_param in params['data_params'].items():
 | 
	
		
			
				|  |  | +    #     log_.info(f"data_key = {data_key}, data_param = {data_param}")
 | 
	
		
			
				|  |  | +    #     df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
 | 
	
		
			
				|  |  | +    #     df_merged = reduce(merge_df, df_list)
 | 
	
		
			
				|  |  | +    #     for rule_key, rule_param in params['rule_params'].items():
 | 
	
		
			
				|  |  | +    #         log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
 | 
	
		
			
				|  |  | +    #         task_list.extend(
 | 
	
		
			
				|  |  | +    #             [
 | 
	
		
			
				|  |  | +    #                 gevent.spawn(process_with_region, region, df_merged, app_type, data_key, rule_key, rule_param,
 | 
	
		
			
				|  |  | +    #                              now_date, now_h)
 | 
	
		
			
				|  |  | +    #                 for region in region_code_list
 | 
	
		
			
				|  |  | +    #             ]
 | 
	
		
			
				|  |  | +    #         )
 | 
	
		
			
				|  |  | +    # gevent.joinall(task_list)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def copy_data_for_city(region, city_code, data_key, rule_key, now_date, now_h, shield_config):
 | 
	
		
			
				|  |  | +    """copy 对应数据到城市对应redis,并做相应屏蔽视频过滤"""
 | 
	
		
			
				|  |  | +    log_.info(f"city_code = {city_code} start ...")
 | 
	
		
			
				|  |  | +    redis_helper = RedisHelper()
 | 
	
		
			
				|  |  | +    key_prefix_list = [
 | 
	
		
			
				|  |  | +        config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H,  # 地域小时级
 | 
	
		
			
				|  |  | +        config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_24H_H,  # 地域相对24h
 | 
	
		
			
				|  |  | +        config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_24H_H,  # 不区分地域相对24h
 | 
	
		
			
				|  |  | +        config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_24H_H,  # 不区分地域相对24h筛选后
 | 
	
		
			
				|  |  | +        config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_H,  # rov大列表
 | 
	
		
			
				|  |  | +    ]
 | 
	
		
			
				|  |  | +    for key_prefix in key_prefix_list:
 | 
	
		
			
				|  |  | +        region_key = f"{key_prefix}{region}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
 | 
	
		
			
				|  |  | +        city_key = f"{key_prefix}{city_code}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
 | 
	
		
			
				|  |  | +        if not redis_helper.key_exists(key_name=region_key):
 | 
	
		
			
				|  |  | +            continue
 | 
	
		
			
				|  |  | +        region_data = redis_helper.get_all_data_from_zset(key_name=region_key, with_scores=True)
 | 
	
		
			
				|  |  | +        if not region_data:
 | 
	
		
			
				|  |  | +            continue
 | 
	
		
			
				|  |  | +        # 屏蔽视频过滤
 | 
	
		
			
				|  |  | +        region_video_ids = [int(video_id) for video_id, _ in region_data]
 | 
	
		
			
				|  |  | +        shield_key_name_list = shield_config.get(city_code, None)
 | 
	
		
			
				|  |  | +        # shield_key_name_list = config_.SHIELD_CONFIG.get(city_code, None)
 | 
	
		
			
				|  |  | +        if shield_key_name_list is not None:
 | 
	
		
			
				|  |  | +            filtered_video_ids = filter_shield_video(video_ids=region_video_ids,
 | 
	
		
			
				|  |  | +                                                     shield_key_name_list=shield_key_name_list)
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            filtered_video_ids = region_video_ids
 | 
	
		
			
				|  |  | +        city_data = {}
 | 
	
		
			
				|  |  | +        for video_id, score in region_data:
 | 
	
		
			
				|  |  | +            if int(video_id) in filtered_video_ids:
 | 
	
		
			
				|  |  | +                city_data[int(video_id)] = score
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        if len(city_data) > 0:
 | 
	
		
			
				|  |  | +            redis_helper.add_data_with_zset(key_name=city_key, data=city_data, expire_time=2 * 24 * 3600)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    log_.info(f"city_code = {city_code} end!")
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def process_with_param(param, data_params_item, rule_params_item, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag):
 | 
	
		
			
				|  |  | +    data_key = param.get('data')
 | 
	
		
			
				|  |  | +    data_param = data_params_item.get(data_key)
 | 
	
		
			
				|  |  | +    rule_key = param.get('rule')
 | 
	
		
			
				|  |  | +    rule_param = rule_params_item.get(rule_key)
 | 
	
		
			
				|  |  | +    merge_func = rule_param.get('merge_func', None)
 | 
	
		
			
				|  |  | +    log_.info("数据采用:{},统计采用{}.".format(data_key, rule_key))
 | 
	
		
			
				|  |  | +    log_.info("具体的规则是:{}.".format(rule_param))
 | 
	
		
			
				|  |  | +    # 是否在地域小时级数据中增加打捞的优质视频
 | 
	
		
			
				|  |  | +    add_videos_with_pre_h = rule_param.get('add_videos_with_pre_h', False)
 | 
	
		
			
				|  |  | +    hour_count = rule_param.get('hour_count', 0)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    if merge_func == 2:
 | 
	
		
			
				|  |  | +        score_df_list = []
 | 
	
		
			
				|  |  | +        for apptype, weight in data_param.items():
 | 
	
		
			
				|  |  | +            df = feature_df[feature_df['apptype'] == apptype]
 | 
	
		
			
				|  |  | +            # 计算score
 | 
	
		
			
				|  |  | +            score_df = cal_score(df=df, param=rule_param)
 | 
	
		
			
				|  |  | +            score_df['score'] = score_df['score'] * weight
 | 
	
		
			
				|  |  | +            score_df_list.append(score_df)
 | 
	
		
			
				|  |  | +        # 分数合并
 | 
	
		
			
				|  |  | +        df_merged = reduce(merge_df_with_score, score_df_list)
 | 
	
		
			
				|  |  | +        # 更新平台回流比
 | 
	
		
			
				|  |  | +        df_merged['platform_return_rate'] = df_merged['platform_return'] / df_merged['lastonehour_return']
 | 
	
		
			
				|  |  | +        task_list = [
 | 
	
		
			
				|  |  | +            gevent.spawn(process_with_region2,
 | 
	
		
			
				|  |  | +                         region, df_merged, data_key, rule_key, rule_param, now_date, now_h, rule_rank_h_flag,
 | 
	
		
			
				|  |  | +                         add_videos_with_pre_h, hour_count)
 | 
	
		
			
				|  |  | +            for region in region_code_list
 | 
	
		
			
				|  |  | +        ]
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
 | 
	
		
			
				|  |  | +        df_merged = reduce(merge_df, df_list)
 | 
	
		
			
				|  |  | +        task_list = [
 | 
	
		
			
				|  |  | +            gevent.spawn(process_with_region,
 | 
	
		
			
				|  |  | +                         region, df_merged, data_key, rule_key, rule_param, now_date, now_h, rule_rank_h_flag,
 | 
	
		
			
				|  |  | +                         add_videos_with_pre_h, hour_count)
 | 
	
		
			
				|  |  | +            for region in region_code_list
 | 
	
		
			
				|  |  | +        ]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    gevent.joinall(task_list)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # 特殊城市视频数据准备
 | 
	
		
			
				|  |  | +    # 屏蔽视频过滤
 | 
	
		
			
				|  |  | +    # shield_config = rule_param.get('shield_config', config_.SHIELD_CONFIG)
 | 
	
		
			
				|  |  | +    # for region, city_list in config_.REGION_CITY_MAPPING.items():
 | 
	
		
			
				|  |  | +    #     t = [
 | 
	
		
			
				|  |  | +    #         gevent.spawn(
 | 
	
		
			
				|  |  | +    #             copy_data_for_city,
 | 
	
		
			
				|  |  | +    #             region, city_code, data_key, rule_key, now_date, now_h, shield_config
 | 
	
		
			
				|  |  | +    #         )
 | 
	
		
			
				|  |  | +    #         for city_code in city_list
 | 
	
		
			
				|  |  | +    #     ]
 | 
	
		
			
				|  |  | +    #     gevent.joinall(t)
 | 
	
		
			
				|  |  | +    log_.info(f"多进程的 param = {param} 完成执行!")
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def rank_by_h(project, table, now_date, now_h, rule_params, region_code_list, rule_rank_h_flag):
 | 
	
		
			
				|  |  | +    # 获取特征数据
 | 
	
		
			
				|  |  | +    feature_df = get_feature_data(project=project, table=table, now_date=now_date)
 | 
	
		
			
				|  |  | +    feature_df['apptype'] = feature_df['apptype'].astype(int)
 | 
	
		
			
				|  |  | +    data_params_item = rule_params.get('data_params')
 | 
	
		
			
				|  |  | +    rule_params_item = rule_params.get('rule_params')
 | 
	
		
			
				|  |  | +    params_list = rule_params.get('params_list')
 | 
	
		
			
				|  |  | +    pool = multiprocessing.Pool(processes=len(params_list))
 | 
	
		
			
				|  |  | +    for param in params_list:
 | 
	
		
			
				|  |  | +        pool.apply_async(
 | 
	
		
			
				|  |  | +            func=process_with_param,
 | 
	
		
			
				|  |  | +            args=(param, data_params_item, rule_params_item, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag)
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +    pool.close()
 | 
	
		
			
				|  |  | +    pool.join()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def h_bottom_process(param, rule_params_item, region_code_list, key_prefix, redis_dt, redis_h,
 | 
	
		
			
				|  |  | +                     now_date, now_h, rule_rank_h_flag):
 | 
	
		
			
				|  |  | +    redis_helper = RedisHelper()
 | 
	
		
			
				|  |  | +    data_key = param.get('data')
 | 
	
		
			
				|  |  | +    rule_key = param.get('rule')
 | 
	
		
			
				|  |  | +    rule_param = rule_params_item.get(rule_key)
 | 
	
		
			
				|  |  | +    log_.info(f"data_key = {data_key}, rule_key = {rule_key}, rule_param = {rule_param}")
 | 
	
		
			
				|  |  | +    h_rule_key = rule_param.get('h_rule_key', None)
 | 
	
		
			
				|  |  | +    region_24h_rule_key = rule_param.get('region_24h_rule_key', 'rule1')
 | 
	
		
			
				|  |  | +    by_24h_rule_key = rule_param.get('24h_rule_key', None)
 | 
	
		
			
				|  |  | +    by_48h_rule_key = rule_param.get('48h_rule_key', None)
 | 
	
		
			
				|  |  | +    # 涉政视频过滤
 | 
	
		
			
				|  |  | +    political_filter = param.get('political_filter', None)
 | 
	
		
			
				|  |  | +    # 屏蔽视频过滤
 | 
	
		
			
				|  |  | +    shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
 | 
	
		
			
				|  |  | +    dup_remove = param.get('dup_remove', True)
 | 
	
		
			
				|  |  | +    for region in region_code_list:
 | 
	
		
			
				|  |  | +        log_.info(f"region = {region}")
 | 
	
		
			
				|  |  | +        key_name = f"{key_prefix}{region}:{data_key}:{rule_key}:{redis_dt}:{redis_h}"
 | 
	
		
			
				|  |  | +        initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
 | 
	
		
			
				|  |  | +        if initial_data is None:
 | 
	
		
			
				|  |  | +            initial_data = []
 | 
	
		
			
				|  |  | +        final_data = dict()
 | 
	
		
			
				|  |  | +        h_video_ids = []
 | 
	
		
			
				|  |  | +        for video_id, score in initial_data:
 | 
	
		
			
				|  |  | +            final_data[video_id] = score
 | 
	
		
			
				|  |  | +            h_video_ids.append(int(video_id))
 | 
	
		
			
				|  |  | +        # 存入对应的redis
 | 
	
		
			
				|  |  | +        final_key_name = \
 | 
	
		
			
				|  |  | +            f"{key_prefix}{region}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
 | 
	
		
			
				|  |  | +        if len(final_data) > 0:
 | 
	
		
			
				|  |  | +            redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=2 * 24 * 3600)
 | 
	
		
			
				|  |  | +        # 与其他召回视频池去重,存入对应的redis
 | 
	
		
			
				|  |  | +        dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, h_rule_key=h_rule_key,
 | 
	
		
			
				|  |  | +                     region_24h_rule_key=region_24h_rule_key, region=region,
 | 
	
		
			
				|  |  | +                     data_key=data_key, by_24h_rule_key=by_24h_rule_key,
 | 
	
		
			
				|  |  | +                     by_48h_rule_key=by_48h_rule_key, rule_rank_h_flag=rule_rank_h_flag,
 | 
	
		
			
				|  |  | +                     political_filter=political_filter, shield_config=shield_config, dup_remove=dup_remove)
 | 
	
		
			
				|  |  | +    # 特殊城市视频数据准备
 | 
	
		
			
				|  |  | +    for region, city_list in config_.REGION_CITY_MAPPING.items():
 | 
	
		
			
				|  |  | +        t = [
 | 
	
		
			
				|  |  | +            gevent.spawn(
 | 
	
		
			
				|  |  | +                copy_data_for_city,
 | 
	
		
			
				|  |  | +                region, city_code, data_key, rule_key, now_date, now_h, shield_config
 | 
	
		
			
				|  |  | +            )
 | 
	
		
			
				|  |  | +            for city_code in city_list
 | 
	
		
			
				|  |  | +        ]
 | 
	
		
			
				|  |  | +        gevent.joinall(t)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def h_rank_bottom(now_date, now_h, rule_params, region_code_list, rule_rank_h_flag):
 | 
	
		
			
				|  |  | +    """未按时更新数据,用上一小时结果作为当前小时的数据"""
 | 
	
		
			
				|  |  | +    # 获取rov模型结果
 | 
	
		
			
				|  |  | +    # redis_helper = RedisHelper()
 | 
	
		
			
				|  |  | +    if now_h == 0:
 | 
	
		
			
				|  |  | +        redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
 | 
	
		
			
				|  |  | +        redis_h = 23
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
 | 
	
		
			
				|  |  | +        redis_h = now_h - 1
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # 以上一小时的地域分组数据作为当前小时的数据
 | 
	
		
			
				|  |  | +    key_prefix = config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H
 | 
	
		
			
				|  |  | +    rule_params_item = rule_params.get('rule_params')
 | 
	
		
			
				|  |  | +    params_list = rule_params.get('params_list')
 | 
	
		
			
				|  |  | +    pool = multiprocessing.Pool(processes=len(params_list))
 | 
	
		
			
				|  |  | +    for param in params_list:
 | 
	
		
			
				|  |  | +        pool.apply_async(
 | 
	
		
			
				|  |  | +            func=h_bottom_process,
 | 
	
		
			
				|  |  | +            args=(param, rule_params_item, region_code_list, key_prefix, redis_dt, redis_h, now_date, now_h, rule_rank_h_flag)
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +    pool.close()
 | 
	
		
			
				|  |  | +    pool.join()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def check_data(project, table, partition) -> int:
 | 
	
		
			
				|  |  | +    """检查数据是否准备好,输出数据条数"""
 | 
	
		
			
				|  |  | +    odps = ODPS(
 | 
	
		
			
				|  |  | +        access_id=config_.ODPS_CONFIG['ACCESSID'],
 | 
	
		
			
				|  |  | +        secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
 | 
	
		
			
				|  |  | +        project=project,
 | 
	
		
			
				|  |  | +        endpoint=config_.ODPS_CONFIG['ENDPOINT'],
 | 
	
		
			
				|  |  | +        connect_timeout=3000,
 | 
	
		
			
				|  |  | +        read_timeout=500000,
 | 
	
		
			
				|  |  | +        pool_maxsize=1000,
 | 
	
		
			
				|  |  | +        pool_connections=1000
 | 
	
		
			
				|  |  | +    )
 | 
	
		
			
				|  |  | +    try:
 | 
	
		
			
				|  |  | +        t = odps.get_table(name=table)
 | 
	
		
			
				|  |  | +        check_res = t.exist_partition(partition_spec=f'dt={partition}')
 | 
	
		
			
				|  |  | +        if check_res:
 | 
	
		
			
				|  |  | +            sql = f'select * from {project}.{table} where dt = {partition}'
 | 
	
		
			
				|  |  | +            with odps.execute_sql(sql=sql).open_reader() as reader:
 | 
	
		
			
				|  |  | +                data_count = reader.count
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            data_count = 0
 | 
	
		
			
				|  |  | +    except Exception as e:
 | 
	
		
			
				|  |  | +        log_.error("table:{},partition:{} no data. return data_count=0".format(table, partition))
 | 
	
		
			
				|  |  | +        data_count = 0
 | 
	
		
			
				|  |  | +    return data_count
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def get_table_data(project, table, partition) -> list[dict]:
 | 
	
		
			
				|  |  | +    """获取全部分区数据"""
 | 
	
		
			
				|  |  | +    records = get_data_from_odps(date=partition, project=project, table=table)
 | 
	
		
			
				|  |  | +    data = []
 | 
	
		
			
				|  |  | +    for record in records:
 | 
	
		
			
				|  |  | +        tmp = {}
 | 
	
		
			
				|  |  | +        for col_name in ["region", "videoid_array_sum", "videoid_array_avg"]:
 | 
	
		
			
				|  |  | +            tmp[col_name] = record[col_name]
 | 
	
		
			
				|  |  | +        data.append(tmp)
 | 
	
		
			
				|  |  | +    return data
 | 
	
		
			
				|  |  | +"""
 | 
	
		
			
				|  |  | +    数据表链接:https://dmc-cn-hangzhou.data.aliyun.com/dm/odps-table/odps.loghubods.alg_recsys_recall_strategy_trend/
 | 
	
		
			
				|  |  | +"""
 | 
	
		
			
				|  |  | +def h_timer_check():
 | 
	
		
			
				|  |  | +    try:
 | 
	
		
			
				|  |  | +        log_.info(f"开始执行: {datetime.datetime.strftime(datetime.datetime.today(), '%Y%m%d%H')}")
 | 
	
		
			
				|  |  | +        #1 判断数据表是否生产完成
 | 
	
		
			
				|  |  | +        project = "loghubods"
 | 
	
		
			
				|  |  | +        table = "alg_recsys_recall_strategy_trend"
 | 
	
		
			
				|  |  | +        partition = "dt=2023122019"
 | 
	
		
			
				|  |  | +        table_data_cnt = check_data(project, table, partition)
 | 
	
		
			
				|  |  | +        if table_data_cnt == 0:
 | 
	
		
			
				|  |  | +            log_.info("上游数据{}未就绪{},等待...".format(table, partition))
 | 
	
		
			
				|  |  | +            Timer(60, h_timer_check).start()
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            #2 读取数据表
 | 
	
		
			
				|  |  | +            data = get_table_data(project, table, partition)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            #3 写入redis
 | 
	
		
			
				|  |  | +            redis_helper = RedisHelper()
 | 
	
		
			
				|  |  | +            redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=2 * 24 * 3600)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        region_code_list = [code for region, code in region_code.items()]
 | 
	
		
			
				|  |  | +        now_date = datetime.datetime.today()
 | 
	
		
			
				|  |  | +        now_h = datetime.datetime.now().hour
 | 
	
		
			
				|  |  | +        now_min = datetime.datetime.now().minute
 | 
	
		
			
				|  |  | +        if now_h == 0:
 | 
	
		
			
				|  |  | +            log_.info("当前时间{}小时,使用bottom的data,开始。".format(now_h))
 | 
	
		
			
				|  |  | +            h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list,
 | 
	
		
			
				|  |  | +                          rule_rank_h_flag=rule_rank_h_flag)
 | 
	
		
			
				|  |  | +            log_.info("----------当前时间{}小时,使用bottom的data,完成----------".format(now_h))
 | 
	
		
			
				|  |  | +            return
 | 
	
		
			
				|  |  | +        # 查看当前小时更新的数据是否已准备好
 | 
	
		
			
				|  |  | +        h_data_count = h_data_check(project=project, table=table, now_date=now_date)
 | 
	
		
			
				|  |  | +        if h_data_count > 0:
 | 
	
		
			
				|  |  | +            log_.info('上游数据表查询数据条数 h_data_count = {},开始计算。'.format(h_data_count))
 | 
	
		
			
				|  |  | +            # 数据准备好,进行更新
 | 
	
		
			
				|  |  | +            rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params,
 | 
	
		
			
				|  |  | +                      project=project, table=table, region_code_list=region_code_list, rule_rank_h_flag=rule_rank_h_flag)
 | 
	
		
			
				|  |  | +            log_.info("数据1----------正常完成----------")
 | 
	
		
			
				|  |  | +        elif now_min > 40:
 | 
	
		
			
				|  |  | +            log_.info('当前分钟超过40,预计执行无法完成,使用 bottom data!')
 | 
	
		
			
				|  |  | +            h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list,
 | 
	
		
			
				|  |  | +                          rule_rank_h_flag=rule_rank_h_flag)
 | 
	
		
			
				|  |  | +            log_.info('----------当前分钟超过40,使用bottom的data,完成----------')
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            # 数据没准备好,1分钟后重新检查
 | 
	
		
			
				|  |  | +            log_.info("上游数据未就绪,等待...")
 | 
	
		
			
				|  |  | +            Timer(60, h_timer_check).start()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    except Exception as e:
 | 
	
		
			
				|  |  | +        log_.error(f"4小时地域-趋势统计数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
 | 
	
		
			
				|  |  | +        send_msg_to_feishu(
 | 
	
		
			
				|  |  | +            webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
 | 
	
		
			
				|  |  | +            key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
 | 
	
		
			
				|  |  | +            msg_text=f"rov-offline{config_.ENV_TEXT} - 4小时地域-趋势统计数据更新失败\n"
 | 
	
		
			
				|  |  | +                     f"exception: {e}\n"
 | 
	
		
			
				|  |  | +                     f"traceback: {traceback.format_exc()}"
 | 
	
		
			
				|  |  | +        )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +if __name__ == '__main__':
 | 
	
		
			
				|  |  | +    log_.info("文件alg_recsys_recall_4h_region_trend.py:「4小时地域-趋势统计」 开始执行")
 | 
	
		
			
				|  |  | +    h_timer_check()
 |