瀏覽代碼

add new rank

liqian 1 年之前
父節點
當前提交
567066df7b
共有 4 個文件被更改,包括 783 次插入3 次删除
  1. 68 0
      check_video_limit_distribute_new.py
  2. 3 1
      config.py
  3. 708 0
      region_rule_rank_h_new.py
  4. 4 2
      region_rule_rank_h_task.sh

+ 68 - 0
check_video_limit_distribute_new.py

@@ -0,0 +1,68 @@
+import gevent
+import datetime
+import numpy as np
+from config import set_config
+from log import Log
+from utils import RedisHelper
+
+config_, _ = set_config()
+log_ = Log()
+redis_helper = RedisHelper()
+
+
+def update_limit_video_score(initial_videos):
+    """
+    调整限流视频的分数: 将视频移至所在列表的中位数之后,多个视频时,按照原本的顺序进行排列
+    :param initial_videos: 视频列表及score type-dict, {videoId: score, ...}
+    :return:
+    """
+    if not initial_videos:
+        return
+    # 获取当前限流视频
+    data = redis_helper.get_data_from_redis(key_name=config_.KEY_NAME_PREFIX_LIMIT_VIDEOS)
+    if data is None:
+        return initial_videos
+    # 获取限流视频对应的score
+    limit_video_initial_score = []
+    for video in eval(data):
+        video_id = int(video[0])
+        initial_score = initial_videos.get(video_id, None)
+        if initial_score is not None:
+            limit_video_initial_score.append((video_id, initial_score))
+
+    log_.info(f"limit_video_initial_score = {limit_video_initial_score}")
+
+    if len(limit_video_initial_score) == 0:
+        return initial_videos
+
+    # 获取原始列表的分数的中位数
+    initial_video_score_list = sorted([val for key, val in initial_videos.items()], reverse=False)
+    media_score = np.median(initial_video_score_list)
+    # 取中位数后一位
+    if len(initial_video_score_list) % 2 == 0:
+        temp_index = len(initial_video_score_list)//2
+    else:
+        temp_index = len(initial_video_score_list) // 2 + 1
+    if len(initial_video_score_list) > 1:
+        temp_score = initial_video_score_list[temp_index]
+    else:
+        temp_score = 0
+
+    # 对限流视频score进行调整
+    limit_video_final_score = {}
+    limit_video_initial_score.sort(key=lambda x: x[1], reverse=True)
+    limit_video_id_list = []
+    for video_id, initial_score in limit_video_initial_score:
+        if initial_score > media_score:
+            limit_video_id_list.append(video_id)
+    if len(limit_video_id_list) > 0:
+        limit_score_step = (temp_score - media_score) / (len(limit_video_id_list) + 1)
+        for i, video_id in enumerate(limit_video_id_list):
+            final_score = media_score - limit_score_step * (i + 1)
+            limit_video_final_score[int(video_id)] = final_score
+            initial_videos[int(video_id)] = final_score
+
+    log_.info(f"media_score = {media_score}, temp_score = {temp_score}, "
+              f"limit_video_final_score = {limit_video_final_score}")
+
+    return initial_videos

+ 3 - 1
config.py

@@ -423,8 +423,10 @@ class BaseConfig(object):
             # {'data': 'data1', 'rule': 'rule16'},  # 214 vlog
             # {'data': 'data1', 'rule': 'rule17'},  # 215 vlog
             # {'data': 'data1', 'rule': 'rule18'},  # 224 vlog
-            {'data': 'data10', 'rule': 'rule19'},  # 316 票圈视频 + 召回在线去重
         ],
+        'params_list_new': [
+            {'data': 'data10', 'rule': 'rule19'},  # 316 票圈视频 + 召回在线去重
+        ]
     }
 
     # 宗教视频更新使用数据

+ 708 - 0
region_rule_rank_h_new.py

@@ -0,0 +1,708 @@
+# -*- coding: utf-8 -*-
+# @ModuleName: region_rule_rank_h
+# @Author: Liqian
+# @Time: 2022/5/5 15:54
+# @Software: PyCharm
+import json
+import multiprocessing
+import os
+import sys
+import traceback
+
+import gevent
+import datetime
+import pandas as pd
+import math
+from functools import reduce
+from odps import ODPS
+from threading import Timer, Thread
+from utils import MysqlHelper, RedisHelper, get_data_from_odps, filter_video_status, filter_shield_video, \
+    check_table_partition_exits, filter_video_status_app, send_msg_to_feishu, filter_political_videos
+from config import set_config
+from log import Log
+from check_video_limit_distribute_new import update_limit_video_score
+
+# os.environ['NUMEXPR_MAX_THREADS'] = '16'
+
+config_, _ = set_config()
+log_ = Log()
+
+region_code = config_.REGION_CODE
+
+features = [
+    'apptype',
+    'code',
+    'videoid',
+    'lastonehour_preview',  # 过去1小时预曝光人数
+    'lastonehour_view',  # 过去1小时曝光人数
+    'lastonehour_play',  # 过去1小时播放人数
+    'lastonehour_share',  # 过去1小时分享人数
+    'lastonehour_return',  # 过去1小时分享,过去1小时回流人数
+    'lastonehour_preview_total',  # 过去1小时预曝光次数
+    'lastonehour_view_total',  # 过去1小时曝光次数
+    'lastonehour_play_total',  # 过去1小时播放次数
+    'lastonehour_share_total',  # 过去1小时分享次数
+    'platform_return',
+    'lastonehour_show',  # 不区分地域
+    'lastonehour_show_region',  # 地域分组
+]
+
+
+def data2file(data, filepath):
+    """数据写入文件"""
+    filedir = '/'.join(filepath.split('/')[:-1])
+    if not os.path.exists(filedir):
+        os.makedirs(filedir)
+    with open(filepath, 'w') as wf:
+        wf.write(data)
+
+
+def get_region_code(region):
+    """获取省份对应的code"""
+    mysql_helper = MysqlHelper(mysql_info=config_.MYSQL_INFO)
+    sql = f"SELECT ad_code FROM region_adcode WHERE parent_id = 0 AND region LIKE '{region}%';"
+    ad_code = mysql_helper.get_data(sql=sql)
+    return ad_code[0][0]
+
+
+def h_data_check(project, table, now_date):
+    """检查数据是否准备好"""
+    odps = ODPS(
+        access_id=config_.ODPS_CONFIG['ACCESSID'],
+        secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
+        project=project,
+        endpoint=config_.ODPS_CONFIG['ENDPOINT'],
+        connect_timeout=3000,
+        read_timeout=500000,
+        pool_maxsize=1000,
+        pool_connections=1000
+    )
+
+    try:
+        dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
+        check_res = check_table_partition_exits(date=dt, project=project, table=table)
+        if check_res:
+            sql = f'select * from {project}.{table} where dt = {dt}'
+            with odps.execute_sql(sql=sql).open_reader() as reader:
+                data_count = reader.count
+        else:
+            data_count = 0
+    except Exception as e:
+        data_count = 0
+    return data_count
+
+
+def get_rov_redis_key(now_date):
+    """获取rov模型结果存放key"""
+    redis_helper = RedisHelper()
+    now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
+    key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
+    if not redis_helper.key_exists(key_name=key_name):
+        pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
+        key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
+    return key_name
+
+
+def get_day_30day_videos(now_date, data_key, rule_key):
+    """获取天级更新相对30天的视频id"""
+    redis_helper = RedisHelper()
+    day_30day_recall_key_prefix = config_.RECALL_KEY_NAME_PREFIX_30DAY
+    now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
+    day_30day_recall_key_name = f"{day_30day_recall_key_prefix}{data_key}:{rule_key}:{now_dt}"
+    if not redis_helper.key_exists(key_name=day_30day_recall_key_name):
+        redis_dt = datetime.datetime.strftime((now_date - datetime.timedelta(days=1)), '%Y%m%d')
+        day_30day_recall_key_name = f"{day_30day_recall_key_prefix}{data_key}:{rule_key}:{redis_dt}"
+    data = redis_helper.get_all_data_from_zset(key_name=day_30day_recall_key_name, with_scores=True)
+    if data is None:
+        return None
+    video_ids = [int(video_id) for video_id, _ in data]
+    return video_ids
+
+
+def get_feature_data(project, table, now_date):
+    """获取特征数据"""
+    dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
+    # dt = '2022041310'
+    records = get_data_from_odps(date=dt, project=project, table=table)
+    feature_data = []
+    for record in records:
+        item = {}
+        for feature_name in features:
+            item[feature_name] = record[feature_name]
+        feature_data.append(item)
+    feature_df = pd.DataFrame(feature_data)
+    return feature_df
+
+
+def cal_score(df, param):
+    """
+    计算score
+    :param df: 特征数据
+    :param param: 规则参数
+    :return:
+    """
+    # score计算公式: sharerate*backrate*logback*ctr
+    # sharerate = lastonehour_share/(lastonehour_play+1000)
+    # backrate = lastonehour_return/(lastonehour_share+10)
+    # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
+    # score = sharerate * backrate * LOG(lastonehour_return+1) * K2
+
+    df = df.fillna(0)
+    df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
+    df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
+    df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
+    if param.get('view_type', None) == 'video-show':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
+    elif param.get('view_type', None) == 'video-show-region':
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
+    else:
+        df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
+    df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
+    df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
+
+    df['score1'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
+
+    click_score_rate = param.get('click_score_rate', None)
+    back_score_rate = param.get('click_score_rate', None)
+    if click_score_rate is not None:
+        df['score'] = (1 - click_score_rate) * df['score1'] + click_score_rate * df['K2']
+    elif back_score_rate is not None:
+        df['score'] = (1 - back_score_rate) * df['score1'] + back_score_rate * df['back_rate']
+    else:
+        df['score'] = df['score1']
+
+    df = df.sort_values(by=['score'], ascending=False)
+    return df
+
+
+def add_func1(initial_df, pre_h_df):
+    """当前小时级数据与前几个小时数据合并"""
+    score_list = initial_df['score'].to_list()
+    if len(score_list) > 0:
+        min_score = min(score_list)
+    else:
+        min_score = 0
+    pre_h_df = pre_h_df[pre_h_df['score'] > min_score]
+    df = pd.concat([initial_df, pre_h_df], ignore_index=True)
+    # videoid去重,保留分值高
+    df['videoid'] = df['videoid'].astype(int)
+    df = df.sort_values(by=['score'], ascending=False)
+    df = df.drop_duplicates(subset=['videoid'], keep="first")
+    return df
+
+
+def add_func2(initial_df, pre_h_df):
+    """当前小时级数据与前几个小时数据合并: 当前小时存在的视频以当前小时为准,否则以高分为主"""
+    score_list = initial_df['score'].to_list()
+    if len(score_list) > 0:
+        min_score = min(score_list)
+    else:
+        min_score = 0
+    initial_video_id_list = initial_df['videoid'].to_list()
+    pre_h_df = pre_h_df[pre_h_df['score'] > min_score]
+    pre_h_df = pre_h_df[~pre_h_df['videoid'].isin(initial_video_id_list)]
+
+    df = pd.concat([initial_df, pre_h_df], ignore_index=True)
+    # videoid去重,保留分值高
+    df['videoid'] = df['videoid'].astype(int)
+    df = df.sort_values(by=['score'], ascending=False)
+    df = df.drop_duplicates(subset=['videoid'], keep="first")
+    return df
+
+
+def add_videos(initial_df, now_date, rule_key, region, data_key, hour_count, top, add_func):
+    """
+    地域小时级数据列表中增加前6h优质视频
+    :param initial_df: 地域小时级筛选结果
+    :param now_date:
+    :param data_key:
+    :param region:
+    :param rule_key:
+    :param hour_count: 前几个小时, type-int
+    :param top: type-int
+    :return: df
+    """
+    redis_helper = RedisHelper()
+    pre_h_data = []
+    for i in range(1, hour_count+1):
+        pre_date = now_date - datetime.timedelta(hours=i)
+        pre_h = pre_date.hour
+        pre_h_recall_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H}{region}:{data_key}:{rule_key}:" \
+                                f"{datetime.datetime.strftime(pre_date, '%Y%m%d')}:{pre_h}"
+        pre_h_top_data = redis_helper.get_data_zset_with_index(key_name=pre_h_recall_key_name,
+                                                               start=0, end=top-1,
+                                                               desc=True, with_scores=True)
+        if pre_h_top_data is None:
+            continue
+        pre_h_data.extend(pre_h_top_data)
+    pre_h_df = pd.DataFrame(data=pre_h_data, columns=['videoid', 'score'])
+    if add_func == 'func2':
+        df = add_func2(initial_df=initial_df, pre_h_df=pre_h_df)
+    else:
+        df = add_func1(initial_df=initial_df, pre_h_df=pre_h_df)
+    return df
+
+
+def video_rank(df, now_date, now_h, rule_key, param, region, data_key, add_videos_with_pre_h=False, hour_count=0):
+    """
+    获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
+    :param hour_count:
+    :param add_videos_with_pre_h:
+    :param data_key:
+    :param df:
+    :param now_date:
+    :param now_h:
+    :param rule_key: 小时级数据进入条件
+    :param param: 小时级数据进入条件参数
+    :param region: 所属地域
+    :return:
+    """
+    redis_helper = RedisHelper()
+
+    # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005
+    return_count = param.get('return_count', 1)
+    score_value = param.get('score_rule', 0)
+    platform_return_rate = param.get('platform_return_rate', 0)
+    h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value)
+                     & (df['platform_return_rate'] >= platform_return_rate)]
+
+    # videoid重复时,保留分值高
+    h_recall_df = h_recall_df.sort_values(by=['score'], ascending=False)
+    h_recall_df = h_recall_df.drop_duplicates(subset=['videoid'], keep='first')
+    h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
+
+    # 增加打捞的优质视频
+    if add_videos_with_pre_h is True:
+        add_func = param.get('add_func', None)
+        h_recall_df = add_videos(initial_df=h_recall_df, now_date=now_date, rule_key=rule_key,
+                                 region=region, data_key=data_key, hour_count=hour_count, top=10, add_func=add_func)
+
+    h_recall_videos = h_recall_df['videoid'].to_list()
+    # log_.info(f'h_recall videos count = {len(h_recall_videos)}')
+
+    # 视频状态过滤
+    if data_key in ['data7', ]:
+        filtered_videos = filter_video_status_app(h_recall_videos)
+    else:
+        filtered_videos = filter_video_status(h_recall_videos)
+    # log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
+
+    # 屏蔽视频过滤
+    shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
+    shield_key_name_list = shield_config.get(region, None)
+    if shield_key_name_list is not None:
+        filtered_videos = filter_shield_video(video_ids=filtered_videos, shield_key_name_list=shield_key_name_list)
+        # log_.info(f"shield filtered_videos count = {len(filtered_videos)}")
+
+    # 涉政视频过滤
+    political_filter = param.get('political_filter', None)
+    if political_filter is True:
+        log_.info(f"political filter videos count = {len(filtered_videos)}")
+        filtered_videos = filter_political_videos(video_ids=filtered_videos)
+        log_.info(f"political filtered videos count = {len(filtered_videos)}")
+
+    h_video_ids = []
+    h_recall_result_mapping = {}
+    for video_id in filtered_videos:
+        score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
+        # print(score)
+        h_recall_result_mapping[int(video_id)] = float(score)
+        h_video_ids.append(int(video_id))
+    # 限流视频score调整
+    h_recall_result_mapping = update_limit_video_score(initial_videos=h_recall_result_mapping)
+    if h_recall_result_mapping:
+        # 按照score排序
+        h_recall_result = [(int(vid), float(score)) for vid, score in h_recall_result_mapping.items()]
+        h_recall_result = sorted(h_recall_result, key=lambda x: x[1], reverse=True)
+        h_recall_result = [(vid, round(score, 10)) for vid, score in h_recall_result]
+        h_recall_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H}{region}:{data_key}:{rule_key}"
+        log_.info(f"h_recall_result count = {len(h_recall_result)}")
+        # 写入对应的redis
+        redis_helper.set_data_to_redis(
+            key_name=h_recall_key_name, value=json.dumps(h_recall_result[:10000]), expire_time=30 * 24 * 3600
+        )
+        # 写入本地文件
+        filename = f"{region}_{data_key}_{rule_key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.txt"
+        data2file(data=json.dumps(h_recall_result), filepath=f"./data/region_h/{filename}")
+
+    region_24h_rule_key = param.get('region_24h_rule_key', 'rule1')
+    by_24h_rule_key = param.get('24h_rule_key', None)
+    # 与其他召回视频池去重,存入对应的redis
+    dup_to_redis(now_date=now_date, now_h=now_h, rule_key=rule_key,
+                 region_24h_rule_key=region_24h_rule_key, by_24h_rule_key=by_24h_rule_key,
+                 region=region, data_key=data_key, political_filter=political_filter,
+                 shield_config=shield_config)
+
+
+def dup_data(initial_key_name, dup_key_name, region, political_filter, shield_config, filepath):
+    redis_helper = RedisHelper()
+    if redis_helper.key_exists(key_name=initial_key_name):
+        initial_data = redis_helper.get_all_data_from_zset(key_name=initial_key_name, with_scores=True)
+        # 屏蔽视频过滤
+        initial_video_ids = [int(video_id) for video_id, _ in initial_data]
+        shield_key_name_list = shield_config.get(region, None)
+        if shield_key_name_list is not None:
+            initial_video_ids = filter_shield_video(video_ids=initial_video_ids,
+                                                    shield_key_name_list=shield_key_name_list)
+        # 涉政视频过滤
+        if political_filter is True:
+            initial_video_ids = filter_political_videos(video_ids=initial_video_ids)
+
+        dup_data = {}
+        for video_id, score in initial_data:
+            if int(video_id) in initial_video_ids:
+                dup_data[int(video_id)] = score
+        # 限流视频score调整
+        dup_data = update_limit_video_score(initial_videos=dup_data)
+        if dup_data:
+            # 按照score排序
+            data = [(int(vid), float(score)) for vid, score in dup_data.items()]
+            data = sorted(data, key=lambda x: x[1], reverse=True)
+            data = [(vid, round(score, 10)) for vid, score in data]
+
+            log_.info(f"data count = {len(data)}")
+            # 写入对应的redis
+            redis_helper.set_data_to_redis(
+                key_name=dup_key_name, value=json.dumps(data[:10000]), expire_time=30 * 24 * 3600
+            )
+            # 写入本地文件
+            data2file(data=json.dumps(data), filepath=filepath)
+
+
+def dup_to_redis(now_date, now_h, rule_key, region_24h_rule_key, by_24h_rule_key,
+                 region, data_key, political_filter, shield_config):
+    """将地域分组小时级数据与其他召回视频池去重,存入对应的redis"""
+    # ##### 更新地域分组小时级24h列表,并另存为redis中
+    region_24h_key_name = \
+        f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H}{region}:{data_key}:{region_24h_rule_key}:" \
+        f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+    region_24h_dup_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_24H_H}{region}:{data_key}:{rule_key}"
+    filename = f"{region}_{data_key}_{rule_key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.txt"
+    dup_data(initial_key_name=region_24h_key_name, dup_key_name=region_24h_dup_key_name, region=region,
+             political_filter=political_filter, shield_config=shield_config, filepath=f"./data/region24h/{filename}")
+
+    # ##### 小程序相对24h更新结果,并另存为redis中
+    h_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}{data_key}:{by_24h_rule_key}:" \
+                     f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+    h_24h_dup_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_24H_H}{region}:{data_key}:{rule_key}"
+    filename = f"{region}_{data_key}_{rule_key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.txt"
+    dup_data(initial_key_name=h_24h_key_name, dup_key_name=h_24h_dup_key_name, region=region,
+             political_filter=political_filter, shield_config=shield_config, filepath=f"./data/24h/{filename}")
+
+    # ##### 去重小程序相对24h 筛选后剩余数据 更新结果,并另存为redis中
+    other_h_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H_OTHER}{data_key}:" \
+                           f"{by_24h_rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
+    other_h_24h_dup_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_24H_H}{region}:{data_key}:{rule_key}"
+    filename = f"{region}_{data_key}_{rule_key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.txt"
+    dup_data(initial_key_name=other_h_24h_key_name, dup_key_name=other_h_24h_dup_key_name, region=region,
+             political_filter=political_filter, shield_config=shield_config, filepath=f"./data/24h_other/{filename}")
+
+
+def merge_df(df_left, df_right):
+    """
+    df按照videoid, code 合并,对应特征求和
+    :param df_left:
+    :param df_right:
+    :return:
+    """
+    df_merged = pd.merge(df_left, df_right, on=['videoid', 'code'], how='outer', suffixes=['_x', '_y'])
+    df_merged.fillna(0, inplace=True)
+    feature_list = ['videoid', 'code']
+    for feature in features:
+        if feature in ['apptype', 'videoid', 'code']:
+            continue
+        df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
+        feature_list.append(feature)
+    return df_merged[feature_list]
+
+
+def merge_df_with_score(df_left, df_right):
+    """
+    df 按照[videoid, code]合并,平台回流人数、回流人数、分数 分别求和
+    :param df_left:
+    :param df_right:
+    :return:
+    """
+    df_merged = pd.merge(df_left, df_right, on=['videoid', 'code'], how='outer', suffixes=['_x', '_y'])
+    df_merged.fillna(0, inplace=True)
+    feature_list = ['videoid', 'code', 'lastonehour_return', 'platform_return', 'score']
+    for feature in feature_list[2:]:
+        df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
+    return df_merged[feature_list]
+
+
+def process_with_region(region, df_merged, data_key, rule_key, rule_param, now_date, now_h,
+                        add_videos_with_pre_h, hour_count):
+    log_.info(f"region = {region} start...")
+    # 计算score
+    region_df = df_merged[df_merged['code'] == region]
+    log_.info(f'region = {region}, region_df count = {len(region_df)}')
+    score_df = cal_score(df=region_df, param=rule_param)
+    video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=rule_key, param=rule_param,
+               region=region, data_key=data_key,
+               add_videos_with_pre_h=add_videos_with_pre_h, hour_count=hour_count)
+    log_.info(f"region = {region} end!")
+
+
+def process_with_region2(region, df_merged, data_key, rule_key, rule_param, now_date, now_h,
+                         add_videos_with_pre_h, hour_count):
+    log_.info(f"region = {region} start...")
+    region_score_df = df_merged[df_merged['code'] == region]
+    log_.info(f'region = {region}, region_score_df count = {len(region_score_df)}')
+    video_rank(df=region_score_df, now_date=now_date, now_h=now_h, region=region,
+               rule_key=rule_key, param=rule_param, data_key=data_key,
+               add_videos_with_pre_h=add_videos_with_pre_h, hour_count=hour_count)
+    log_.info(f"region = {region} end!")
+
+
+def process_with_app_type(app_type, params, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag):
+    log_.info(f"app_type = {app_type} start...")
+    data_params_item = params.get('data_params')
+    rule_params_item = params.get('rule_params')
+    task_list = []
+    for param in params.get('params_list'):
+        data_key = param.get('data')
+        data_param = data_params_item.get(data_key)
+        log_.info(f"data_key = {data_key}, data_param = {data_param}")
+        df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
+        df_merged = reduce(merge_df, df_list)
+
+        rule_key = param.get('rule')
+        rule_param = rule_params_item.get(rule_key)
+        log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
+        task_list.extend(
+            [
+                gevent.spawn(process_with_region, region, df_merged, app_type, data_key, rule_key, rule_param,
+                             now_date, now_h, rule_rank_h_flag)
+                for region in region_code_list
+            ]
+        )
+    gevent.joinall(task_list)
+    log_.info(f"app_type = {app_type} end!")
+
+
+    # log_.info(f"app_type = {app_type}")
+    # task_list = []
+    # for data_key, data_param in params['data_params'].items():
+    #     log_.info(f"data_key = {data_key}, data_param = {data_param}")
+    #     df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
+    #     df_merged = reduce(merge_df, df_list)
+    #     for rule_key, rule_param in params['rule_params'].items():
+    #         log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
+    #         task_list.extend(
+    #             [
+    #                 gevent.spawn(process_with_region, region, df_merged, app_type, data_key, rule_key, rule_param,
+    #                              now_date, now_h)
+    #                 for region in region_code_list
+    #             ]
+    #         )
+    # gevent.joinall(task_list)
+
+
+def copy_data_for_city(region, city_code, data_key, rule_key, shield_config, now_date):
+    """copy 对应数据到城市对应redis,并做相应屏蔽视频过滤"""
+    log_.info(f"city_code = {city_code} start ...")
+    redis_helper = RedisHelper()
+    key_prefix_list = [
+        (config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H, 'region_h'),  # 地域小时级
+        (config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_24H_H, 'region_24h'),  # 地域相对24h
+        (config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_24H_H, '24h'),  # 不区分地域相对24h
+        (config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_24H_H, '24h_other')  # 不区分地域相对24h筛选后
+    ]
+    for key_prefix, file_folder in key_prefix_list:
+        region_key = f"{key_prefix}{region}:{data_key}:{rule_key}"
+        city_key = f"{key_prefix}{city_code}:{data_key}:{rule_key}"
+        if not redis_helper.key_exists(key_name=region_key):
+            continue
+        region_data = redis_helper.get_data_from_redis(key_name=region_key)
+        if not region_data:
+            continue
+        # 屏蔽视频过滤
+        region_video_ids = [int(video_id) for video_id, _ in json.loads(region_data)]
+        shield_key_name_list = shield_config.get(city_code, None)
+        # shield_key_name_list = config_.SHIELD_CONFIG.get(city_code, None)
+        if shield_key_name_list is not None:
+            filtered_video_ids = filter_shield_video(video_ids=region_video_ids,
+                                                     shield_key_name_list=shield_key_name_list)
+        else:
+            filtered_video_ids = region_video_ids
+        city_data = []
+        for video_id, score in json.loads(region_data):
+            if int(video_id) in filtered_video_ids:
+                city_data.append((int(video_id), score))
+
+        if len(city_data) > 0:
+            redis_helper.set_data_to_redis(key_name=city_key, value=json.dumps(city_data), expire_time=30 * 24 * 3600)
+            # 写入本地文件
+            filename = f"{region}_{data_key}_{rule_key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.txt"
+            data2file(data=json.dumps(city_data), filepath=f"./data/{file_folder}/{filename}")
+
+    log_.info(f"city_code = {city_code} end!")
+
+
+def process_with_param(param, data_params_item, rule_params_item, region_code_list, feature_df, now_date, now_h):
+    log_.info(f"param = {param} start...")
+
+    data_key = param.get('data')
+    data_param = data_params_item.get(data_key)
+    log_.info(f"data_key = {data_key}, data_param = {data_param}")
+    rule_key = param.get('rule')
+    rule_param = rule_params_item.get(rule_key)
+    log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
+    merge_func = rule_param.get('merge_func', None)
+    # 是否在地域小时级数据中增加打捞的优质视频
+    add_videos_with_pre_h = rule_param.get('add_videos_with_pre_h', False)
+    hour_count = rule_param.get('hour_count', 0)
+
+    if merge_func == 2:
+        score_df_list = []
+        for apptype, weight in data_param.items():
+            df = feature_df[feature_df['apptype'] == apptype]
+            # 计算score
+            score_df = cal_score(df=df, param=rule_param)
+            score_df['score'] = score_df['score'] * weight
+            score_df_list.append(score_df)
+        # 分数合并
+        df_merged = reduce(merge_df_with_score, score_df_list)
+        # 更新平台回流比
+        df_merged['platform_return_rate'] = df_merged['platform_return'] / df_merged['lastonehour_return']
+        task_list = [
+            gevent.spawn(process_with_region2,
+                         region, df_merged, data_key, rule_key, rule_param, now_date, now_h,
+                         add_videos_with_pre_h, hour_count)
+            for region in region_code_list
+        ]
+    else:
+        df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
+        df_merged = reduce(merge_df, df_list)
+        task_list = [
+            gevent.spawn(process_with_region,
+                         region, df_merged, data_key, rule_key, rule_param, now_date, now_h,
+                         add_videos_with_pre_h, hour_count)
+            for region in region_code_list
+        ]
+
+    gevent.joinall(task_list)
+
+    # 特殊城市视频数据准备
+    # 屏蔽视频过滤
+    shield_config = rule_param.get('shield_config', config_.SHIELD_CONFIG)
+    for region, city_list in config_.REGION_CITY_MAPPING.items():
+        t = [
+            gevent.spawn(
+                copy_data_for_city,
+                region, city_code, data_key, rule_key, shield_config, now_date
+            )
+            for city_code in city_list
+        ]
+        gevent.joinall(t)
+
+    log_.info(f"param = {param} end!")
+
+
+def rank_by_h(project, table, now_date, now_h, rule_params, region_code_list):
+    # 获取特征数据
+    feature_df = get_feature_data(project=project, table=table, now_date=now_date)
+    feature_df['apptype'] = feature_df['apptype'].astype(int)
+    data_params_item = rule_params.get('data_params')
+    rule_params_item = rule_params.get('rule_params')
+    params_list = rule_params.get('params_list_new')
+    pool = multiprocessing.Pool(processes=len(params_list))
+    for param in params_list:
+        pool.apply_async(
+            func=process_with_param,
+            args=(param, data_params_item, rule_params_item, region_code_list, feature_df, now_date, now_h)
+        )
+    pool.close()
+    pool.join()
+
+
+def h_bottom_process(param, rule_params_item, region_code_list, now_date, now_h):
+    data_key = param.get('data')
+    rule_key = param.get('rule')
+    rule_param = rule_params_item.get(rule_key)
+    log_.info(f"data_key = {data_key}, rule_key = {rule_key}, rule_param = {rule_param}")
+    region_24h_rule_key = rule_param.get('region_24h_rule_key', 'rule1')
+    by_24h_rule_key = rule_param.get('24h_rule_key', None)
+    # 涉政视频过滤
+    political_filter = param.get('political_filter', None)
+    # 屏蔽视频过滤
+    shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
+    for region in region_code_list:
+        log_.info(f"region = {region}")
+        # 与其他召回视频池去重,存入对应的redis
+        dup_to_redis(now_date=now_date, now_h=now_h, rule_key=rule_key,
+                     region_24h_rule_key=region_24h_rule_key, region=region,
+                     data_key=data_key, by_24h_rule_key=by_24h_rule_key,
+                     political_filter=political_filter, shield_config=shield_config)
+    # 特殊城市视频数据准备
+    for region, city_list in config_.REGION_CITY_MAPPING.items():
+        t = [
+            gevent.spawn(
+                copy_data_for_city,
+                region, city_code, data_key, rule_key, shield_config, now_date
+            )
+            for city_code in city_list
+        ]
+        gevent.joinall(t)
+
+
+def h_rank_bottom(now_date, now_h, rule_params, region_code_list):
+    """未按时更新数据,用上一小时结果作为当前小时的数据"""
+    # 以上一小时的地域分组数据作为当前小时的数据
+    rule_params_item = rule_params.get('rule_params')
+    params_list = rule_params.get('params_list_new')
+    pool = multiprocessing.Pool(processes=len(params_list))
+    for param in params_list:
+        pool.apply_async(
+            func=h_bottom_process,
+            args=(param, rule_params_item, region_code_list, now_date, now_h)
+        )
+    pool.close()
+    pool.join()
+
+
+def h_timer_check():
+    try:
+        rule_params = config_.RULE_PARAMS_REGION_APP_TYPE
+        project = config_.PROJECT_REGION_APP_TYPE
+        table = config_.TABLE_REGION_APP_TYPE
+        region_code_list = [code for region, code in region_code.items()]
+        now_date = datetime.datetime.today()
+        log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
+        now_h = datetime.datetime.now().hour
+        now_min = datetime.datetime.now().minute
+        if now_h == 0:
+            h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list)
+            log_.info(f"region_h_data end!")
+            return
+        # 查看当前小时更新的数据是否已准备好
+        h_data_count = h_data_check(project=project, table=table, now_date=now_date)
+        if h_data_count > 0:
+            log_.info(f'region_h_data_count = {h_data_count}')
+            # 数据准备好,进行更新
+            rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params,
+                      project=project, table=table, region_code_list=region_code_list)
+            log_.info(f"region_h_data end!")
+        elif now_min > 40:
+            log_.info('h_recall data is None, use bottom data!')
+            h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list)
+            log_.info(f"region_h_data end!")
+        else:
+            # 数据没准备好,1分钟后重新检查
+            Timer(60, h_timer_check).start()
+
+    except Exception as e:
+        log_.error(f"地域分组小时级数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
+        send_msg_to_feishu(
+            webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
+            key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
+            msg_text=f"rov-offline{config_.ENV_TEXT} - 地域分组小时级数据更新失败\n"
+                     f"exception: {e}\n"
+                     f"traceback: {traceback.format_exc()}"
+        )
+
+
+if __name__ == '__main__':
+    log_.info(f"region_h_data start...")
+    h_timer_check()

+ 4 - 2
region_rule_rank_h_task.sh

@@ -3,11 +3,13 @@ echo $ROV_OFFLINE_ENV
 if [[ $ROV_OFFLINE_ENV == 'test' ]]; then
     cd /data2/rov-offline && /root/anaconda3/bin/python /data2/rov-offline/rule_rank_h_by_24h.py &&
      /root/anaconda3/bin/python /data2/rov-offline/region_rule_rank_h_by24h.py &&
-      /root/anaconda3/bin/python /data2/rov-offline/region_rule_rank_h.py '24h'
+      /root/anaconda3/bin/python /data2/rov-offline/region_rule_rank_h.py '24h' &&
+      /root/anaconda3/bin/python /data2/rov-offline/region_rule_rank_h_new.py
 #      /root/anaconda3/bin/python /data2/rov-offline/laohaokan_recommend_update.py
 elif [[ $ROV_OFFLINE_ENV == 'pro' ]]; then
     cd /data/rov-offline && /root/anaconda3/bin/python /data/rov-offline/rule_rank_h_by_24h.py &&
      /root/anaconda3/bin/python /data/rov-offline/region_rule_rank_h_by24h.py &&
-      /root/anaconda3/bin/python /data/rov-offline/region_rule_rank_h.py '24h'
+      /root/anaconda3/bin/python /data/rov-offline/region_rule_rank_h.py '24h' &&
+      /root/anaconda3/bin/python /data/rov-offline/region_rule_rank_h_new.py
 #      /root/anaconda3/bin/python /data/rov-offline/laohaokan_recommend_update.py
 fi