|
@@ -62,6 +62,7 @@ def process_predict_data(filename):
|
|
|
"""
|
|
|
# 获取数据
|
|
|
data = read_from_pickle(filename)
|
|
|
+ print(len(data))
|
|
|
|
|
|
# 获取视频id列
|
|
|
video_ids = data['videoid']
|
|
@@ -69,6 +70,7 @@ def process_predict_data(filename):
|
|
|
video_id_list = [int(video_id) for video_id in video_ids]
|
|
|
filtered_videos = [str(item) for item in filter_video_status(video_ids=video_id_list)]
|
|
|
data = data.loc[data['videoid'].isin(filtered_videos)]
|
|
|
+ print(len(data))
|
|
|
|
|
|
video_id_final = data['videoid']
|
|
|
|
|
@@ -236,7 +238,7 @@ def predict():
|
|
|
columns=['video_id', 'rov_score', 'normal_y_', 'y_'],
|
|
|
sort_columns=['rov_score'],
|
|
|
ascending=False)
|
|
|
-
|
|
|
+ """
|
|
|
# 上传redis
|
|
|
key_name = config_.RECALL_KEY_NAME_PREFIX + time.strftime('%Y%m%d')
|
|
|
redis_helper = RedisHelper()
|
|
@@ -253,6 +255,7 @@ def predict():
|
|
|
log_.info('notify backend success!')
|
|
|
else:
|
|
|
log_.error('notify backend fail!')
|
|
|
+ """
|
|
|
|
|
|
# ##### 下线
|
|
|
# # 更新视频的宽高比数据
|
|
@@ -302,6 +305,7 @@ def predict_test():
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
+ """
|
|
|
log_.info('rov model train start...')
|
|
|
train_start = time.time()
|
|
|
train_filename = config_.TRAIN_DATA_FILENAME
|
|
@@ -310,14 +314,16 @@ if __name__ == '__main__':
|
|
|
train(X, Y, features=fea)
|
|
|
train_end = time.time()
|
|
|
log_.info('rov model train end, execute time = {}ms'.format((train_end - train_start)*1000))
|
|
|
+ """
|
|
|
|
|
|
log_.info('rov model predict start...')
|
|
|
predict_start = time.time()
|
|
|
- if env in ['dev', 'test']:
|
|
|
- predict_test()
|
|
|
- elif env in ['pre', 'pro']:
|
|
|
- predict()
|
|
|
- else:
|
|
|
- log_.error('env error')
|
|
|
+ predict()
|
|
|
+ # if env in ['dev', 'test']:
|
|
|
+ # predict_test()
|
|
|
+ # elif env in ['pre', 'pro']:
|
|
|
+ # predict()
|
|
|
+ # else:
|
|
|
+ # log_.error('env error')
|
|
|
predict_end = time.time()
|
|
|
log_.info('rov model predict end, execute time = {}ms'.format((predict_end - predict_start)*1000))
|