|
@@ -20,10 +20,10 @@ features = [
|
|
|
'lastonehour_play', # 过去1小时播放人数
|
|
|
'lastonehour_share', # 过去1小时分享人数
|
|
|
'lastonehour_return', # 过去1小时分享,过去1小时回流人数
|
|
|
- 'lastonehour_preview_total', # 过去1小时预曝光次数
|
|
|
- 'lastonehour_view_total', # 过去1小时曝光次数
|
|
|
- 'lastonehour_play_total', # 过去1小时播放次数
|
|
|
- 'lastonehour_share_total', # 过去1小时分享次数
|
|
|
+ 'lastonehour_preview_total_final', # 过去1小时预曝光次数
|
|
|
+ 'lastonehour_view_total_final', # 过去1小时曝光次数
|
|
|
+ 'lastonehour_play_total_final', # 过去1小时播放次数
|
|
|
+ 'lastonehour_share_total_final', # 过去1小时分享次数
|
|
|
]
|
|
|
|
|
|
|
|
@@ -111,6 +111,18 @@ def cal_score2(df):
|
|
|
return df
|
|
|
|
|
|
|
|
|
+def cal_score3(df):
|
|
|
+ # score3计算公式:
|
|
|
+ # score = lastonehour_share_total_final/(lastonehour_view+1000)
|
|
|
+ # + 0.03 * lastonehour_return/(lastonehour_share_total_final+1)
|
|
|
+ df = df.fillna(0)
|
|
|
+ df['share_rate'] = df['lastonehour_share_total_final'] / (df['lastonehour_view'] + 1000)
|
|
|
+ df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share_total_final'] + 1)
|
|
|
+ df['score'] = df['share_rate'] + 0.03 * df['back_rate']
|
|
|
+ df = df.sort_values(by=['score'], ascending=False)
|
|
|
+ return df
|
|
|
+
|
|
|
+
|
|
|
def video_rank(df, now_date, now_h, rule_key, param):
|
|
|
"""
|
|
|
获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
|