|  | @@ -87,9 +87,9 @@ def predict_ad_group_video():
 | 
											
												
													
														|  |      for index, item in group_df.iterrows():
 |  |      for index, item in group_df.iterrows():
 | 
											
												
													
														|  |          predict_df[item['group']] = predict_df['video_ad_share_rate'] * item['group_ad_share_rate']
 |  |          predict_df[item['group']] = predict_df['video_ad_share_rate'] * item['group_ad_share_rate']
 | 
											
												
													
														|  |          # 获取分组对应的均值作为阈值
 |  |          # 获取分组对应的均值作为阈值
 | 
											
												
													
														|  | -        threshold_data[item['group']] = predict_df[item['group']].mean() / 24 * 13
 |  | 
 | 
											
												
													
														|  | 
 |  | +        threshold_data[item['group']] = predict_df[item['group']].mean() / 48 * 27
 | 
											
												
													
														|  |          all_group_data.extend(predict_df[item['group']].tolist())
 |  |          all_group_data.extend(predict_df[item['group']].tolist())
 | 
											
												
													
														|  | -    threshold_data['mean_group'] = np.mean(all_group_data) / 24 * 13
 |  | 
 | 
											
												
													
														|  | 
 |  | +    threshold_data['mean_group'] = np.mean(all_group_data) / 48 * 27
 | 
											
												
													
														|  |      log_.info(f"threshold_data = {threshold_data}")
 |  |      log_.info(f"threshold_data = {threshold_data}")
 | 
											
												
													
														|  |      # 将阈值写入redis
 |  |      # 将阈值写入redis
 | 
											
												
													
														|  |      for key, val in threshold_data.items():
 |  |      for key, val in threshold_data.items():
 |