liqian hai 1 ano
pai
achega
32e40a1bd9
Modificáronse 1 ficheiros con 7 adicións e 1 borrados
  1. 7 1
      ad_xgboost_train.py

+ 7 - 1
ad_xgboost_train.py

@@ -33,7 +33,7 @@ xgb_model = XGBClassifier(
     objective='binary:logistic',
     learning_rate=0.3,
     max_depth=5,
-    eval_metric=['error', 'logloss', 'auc']
+    eval_metric=['mae', 'auc']
 )
 xgb_model.fit(x_train, y_train, eval_set=[(x_train, y_train), (x_test, y_test)])
 # 5. 模型保存
@@ -51,3 +51,9 @@ test_accuracy = metrics.accuracy_score(y_test, y_test_pre)
 print("Test Accuracy: %.2f%%" % (test_accuracy * 100.0))
 test_auc = metrics.roc_auc_score(y_test, y_test_pre)
 print("auc: %.2f%%" % (test_auc * 100.0))
+test_recall = metrics.recall_score(y_test, y_test_pre)
+print("recall:%.2f%%"%(test_recall*100.0))
+test_f1 = metrics.f1_score(y_test, y_test_pre)
+print("f1:%.2f%%"%(test_f1*100.0))
+test_precision = metrics.precision_score(y_test, y_test_pre)
+print("precision:%.2f%%"%(test_precision*100.0))