|
@@ -12,7 +12,7 @@ config_, _ = set_config()
|
|
|
log_ = Log()
|
|
|
redis_helper = RedisHelper()
|
|
|
|
|
|
-from feature import get_item_features
|
|
|
+from feature import get_user_features
|
|
|
from lr_model import LrModel
|
|
|
from utils import exe_sql
|
|
|
|
|
@@ -209,27 +209,27 @@ SELECT
|
|
|
*
|
|
|
from candidate_user
|
|
|
""".format(datetime=datetime)
|
|
|
- print(sql)
|
|
|
+ # print(sql)
|
|
|
data = exe_sql(project, sql)
|
|
|
print('sql done')
|
|
|
# data.to_csv('./data/ad_out_sample_v2_item.{datetime}'.format(datetime=datetime), sep='\t')
|
|
|
# data = pd.read_csv('./data/ad_out_sample_v2_item.{datetime}'.format(datetime=datetime), sep='\t', dtype=str)
|
|
|
data.fillna('', inplace=True)
|
|
|
- lr_model = LrModel('model/ad_out_v2_model_v1.day.json')
|
|
|
+ model_key = 'ad_out_v2_model_v1.day'
|
|
|
+ lr_model = LrModel('model/{}.json'.format(model_key))
|
|
|
item_h_dict = {}
|
|
|
k_col = 'u_id'
|
|
|
dt = datetime
|
|
|
- model_key = 'test_lr_v1'
|
|
|
key_name = f"{config_.KEY_NAME_PREFIX_AD_OUT_MODEL_SCORE_USER}{model_key}:{dt}"
|
|
|
print(key_name)
|
|
|
for index, row in tqdm(data.iterrows()):
|
|
|
k = row['u_id']
|
|
|
- item_features = get_item_features(row)
|
|
|
- item_h = lr_model.predict_h(item_features)
|
|
|
- item_h_dict[k] = item_h
|
|
|
+ user_features = get_user_features(row)
|
|
|
+ user_h = lr_model.predict_h(user_features)
|
|
|
+ user_h_dict[k] = user_h
|
|
|
# print(item_features)
|
|
|
# print(item_h)
|
|
|
- redis_helper.add_data_with_zset(key_name=key_name, data=item_h_dict, expire_time=2 * 24 * 3600)
|
|
|
- with open('test_user.json', 'w') as fout:
|
|
|
+ redis_helper.add_data_with_zset(key_name=key_name, data=user_h_dict, expire_time=2 * 24 * 3600)
|
|
|
+ with open('{}.json'.format(key_name), 'w') as fout:
|
|
|
json.dump(item_h_dict, fout, indent=2, ensure_ascii=False, sort_keys=True)
|
|
|
|