|  | @@ -0,0 +1,62 @@
 | 
	
		
			
				|  |  | +import datetime
 | 
	
		
			
				|  |  | +import os
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +from odps import ODPS
 | 
	
		
			
				|  |  | +from datetime import datetime as dt
 | 
	
		
			
				|  |  | +from threading import Timer
 | 
	
		
			
				|  |  | +from config import set_config
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +config_ = set_config()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def rov_train_recall_pool_update():
 | 
	
		
			
				|  |  | +    # 训练数据和预测数据都准备好时,更新模型,预测
 | 
	
		
			
				|  |  | +    os.system('sh /data/rov-offline/rov_train_recall_pool_update.sh')
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def data_check(project, table, date):
 | 
	
		
			
				|  |  | +    odps = ODPS(
 | 
	
		
			
				|  |  | +        access_id='LTAI4FtW5ZzxMvdw35aNkmcp',
 | 
	
		
			
				|  |  | +        secret_access_key='0VKnydcaHK3ITjylbgUsLubX6rwiwc',
 | 
	
		
			
				|  |  | +        project=project,
 | 
	
		
			
				|  |  | +        endpoint='http://service.cn.maxcompute.aliyun.com/api',
 | 
	
		
			
				|  |  | +        connect_timeout=3000,
 | 
	
		
			
				|  |  | +        read_timeout=500000,
 | 
	
		
			
				|  |  | +        pool_maxsize=1000,
 | 
	
		
			
				|  |  | +        pool_connections=1000
 | 
	
		
			
				|  |  | +    )
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    try:
 | 
	
		
			
				|  |  | +        sql = "select * from {}.{} where dt = {}".format(project, table, date)
 | 
	
		
			
				|  |  | +        with odps.execute_sql(sql=sql).open_reader() as reader:
 | 
	
		
			
				|  |  | +            feature_count = reader.count
 | 
	
		
			
				|  |  | +    except Exception as e:
 | 
	
		
			
				|  |  | +        feature_count = 0
 | 
	
		
			
				|  |  | +    return feature_count
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def timer_check():
 | 
	
		
			
				|  |  | +    # 当前日期
 | 
	
		
			
				|  |  | +    now_date = datetime.datetime.today()
 | 
	
		
			
				|  |  | +    # 训练数据 最近日期分区
 | 
	
		
			
				|  |  | +    train_dt = now_date - datetime.timedelta(days=config_.TRAIN_DIFF)
 | 
	
		
			
				|  |  | +    train_date = dt.strftime(train_dt, '%Y%m%d')
 | 
	
		
			
				|  |  | +    # 预测数据 最近日期分区
 | 
	
		
			
				|  |  | +    predict_dt = now_date - datetime.timedelta(days=config_.PREDICT_DIFF)
 | 
	
		
			
				|  |  | +    predict_date = dt.strftime(predict_dt, '%Y%m%d')
 | 
	
		
			
				|  |  | +    # 查看训练数据特征是否准备好
 | 
	
		
			
				|  |  | +    train_feature_count = data_check(config_.TRAIN_PROJECT, config_.TRAIN_TABLE, train_date)
 | 
	
		
			
				|  |  | +    # 查看训练数据特征是否准备好
 | 
	
		
			
				|  |  | +    predict_feature_count = data_check(config_.PREDICT_PROJECT, config_.PREDICT_TABLE, predict_date)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # 数据未准备好,1分钟后重新检查
 | 
	
		
			
				|  |  | +    if train_feature_count == 0 or predict_feature_count == 0:
 | 
	
		
			
				|  |  | +        # 数据未准备好,1分钟后重新检查
 | 
	
		
			
				|  |  | +        Timer(60, timer_check).start()
 | 
	
		
			
				|  |  | +    else:
 | 
	
		
			
				|  |  | +        # 数据准备好,更新模型,预测
 | 
	
		
			
				|  |  | +        rov_train_recall_pool_update()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +if __name__ == '__main__':
 | 
	
		
			
				|  |  | +    timer_check()
 |