Browse Source

layer1_rank 按类目推荐

xueyiming 6 months ago
parent
commit
1ca24b415d
1 changed files with 40 additions and 26 deletions
  1. 40 26
      alg_growth_3rd_gh_reply_video_v1.py

+ 40 - 26
alg_growth_3rd_gh_reply_video_v1.py

@@ -267,6 +267,7 @@ EXPLORE_POOL_TABLE = 'alg_growth_video_return_stats_history'
 GH_REPLY_STATS_TABLE = 'alg_growth_3rd_gh_reply_video_stats'
 # ODPS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data'
 ODPS_3RD_RANK_RESULT_TABLE = 'alg_3rd_gh_autoreply_video_rank_data'
+GH_DETAIL = 'gh_detail'
 RDS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data'
 STATS_PERIOD_DAYS = 5
 SEND_N = 1
@@ -323,9 +324,11 @@ def process_reply_stats(project, table, period, run_dt):
     return merged_df
 
 
-def rank_for_layer1(run_dt, run_hour, project, table):
+def rank_for_layer1(run_dt, run_hour, gh):
     # TODO: 加审核&退场
-    df = get_odps_df_of_max_partition(project, table, {'dt': run_dt})
+    gh = gh[gh['type'] == 2]
+
+    df = get_odps_df_of_max_partition(ODS_PROJECT, EXPLORE_POOL_TABLE, {'dt': run_dt})
     df = df.to_pandas()
     # 确保重跑时可获得一致结果
     dt_version = f'{run_dt}{run_hour}'
@@ -333,17 +336,15 @@ def rank_for_layer1(run_dt, run_hour, project, table):
 
     # TODO: 修改权重计算策略
     df['score'] = df['ros']
-
-    sampled_df = df.sample(n=SEND_N, weights=df['score'])
-    sampled_df['sort'] = range(1, len(sampled_df) + 1)
+    # 处理每个分类  指定要保留的每个分类的得分最高数量SEND_N
+    sampled_df = df.groupby('category1').apply(lambda x: x.nlargest(SEND_N, 'score')).reset_index(drop=True)
+    # 添加'sort'列
+    sampled_df['sort'] = sampled_df.groupby('category1')['score'].rank(method='first', ascending=False).astype(int)
+    # 按得分排序
+    sampled_df = sampled_df.sort_values(by=['category1', 'score'], ascending=[True, False]).reset_index(drop=True)
     sampled_df['strategy_key'] = EXPLORE1_GROUP_NAME
     sampled_df['dt_version'] = dt_version
-
-    gh_name_df = pd.DataFrame({'gh_id': GH_IDS + ('default',)})
-    sampled_df['_tmpkey'] = 1
-    gh_name_df['_tmpkey'] = 1
-    extend_df = sampled_df.merge(gh_name_df, on='_tmpkey').drop('_tmpkey', axis=1)
-
+    extend_df = sampled_df.merge(gh, on='category1')
     result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
     return result_df
 
@@ -428,7 +429,6 @@ def rank_for_base(run_dt, run_hour, project, stats_table, rank_table, stg_key):
 
     ranked_df = grouped_stats_df.groupby('gh_id').apply(set_top_n, SEND_N)
     ranked_df = ranked_df.reset_index(drop=True)
-    # ranked_df['sort'] = grouped_stats_df.groupby('gh_id')['score'].rank(ascending=False)
     ranked_df['strategy_key'] = stg_key
     ranked_df['dt_version'] = dt_version
     ranked_df = ranked_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
@@ -436,7 +436,7 @@ def rank_for_base(run_dt, run_hour, project, stats_table, rank_table, stg_key):
 
 
 def check_result_data(df):
-    for gh_id in GH_IDS + ('default',):
+    for gh_id in GH_IDS:
         for key in (EXPLORE1_GROUP_NAME, EXPLORE2_GROUP_NAME, BASE_GROUP_NAME):
             sub_df = df.query(f'gh_id == "{gh_id}" and strategy_key == "{key}"')
             if len(sub_df) != SEND_N:
@@ -447,7 +447,7 @@ def rank_for_base_designate(run_dt, run_hour, stg_key):
     dt_version = f'{run_dt}{run_hour}'
     ranked_df = pd.DataFrame()  # 初始化一个空的 DataFrame
 
-    for gh_id in GH_IDS + ('default',):
+    for gh_id in GH_IDS:
         if gh_id in TARGET_GH_IDS:
             temp_df = pd.DataFrame({
                 'strategy_key': [stg_key],
@@ -471,13 +471,27 @@ def rank_for_base_designate(run_dt, run_hour, stg_key):
 
 
 def build_and_transfer_data(run_dt, run_hour, project, **kwargs):
-    dt_version = f'{run_dt}{run_hour}'
+    gh = get_odps_df_of_max_partition(ODS_PROJECT, GH_DETAIL, {'dt': run_dt})
+    gh = gh.to_pandas()
+    gh = gh[gh['type'] == 2]
+    if 'default' not in gh['gh_id'].values:
+        # 如果没有,添加一行
+        new_row = pd.DataFrame({'gh_id': ['default'], 'gh_name': ['默认'], 'type': [2], 'category1': ['泛生活']},
+                               index=[0])
+        # 使用pd.concat添加新行
+        gh = pd.concat([gh, new_row], ignore_index=True)
+
+    gh = gh.drop_duplicates(subset=['gh_id'])
+    gh_ids = tuple(gh['gh_id'])
+    global GH_IDS
+    GH_IDS = gh_ids
+
     dry_run = kwargs.get('dry_run', False)
 
-    # layer1_rank = rank_for_layer1(run_dt, run_hour, ODS_PROJECT, EXPLORE_POOL_TABLE)
+    layer1_rank = rank_for_layer1(run_dt, run_hour, gh)
     # layer2_rank = rank_for_layer2(run_dt, run_hour, ODS_PROJECT, GH_REPLY_STATS_TABLE, ODPS_3RD_RANK_RESULT_TABLE)
     # base_rank = rank_for_base(run_dt, run_hour, ODS_PROJECT, GH_REPLY_STATS_TABLE, ODPS_3RD_RANK_RESULT_TABLE,BASE_GROUP_NAME)
-    layer1_rank = rank_for_base_designate(run_dt, run_hour, EXPLORE1_GROUP_NAME)
+    # layer1_rank = rank_for_base_designate(run_dt, run_hour, EXPLORE1_GROUP_NAME)
     layer2_rank = rank_for_base_designate(run_dt, run_hour, EXPLORE2_GROUP_NAME)
     base_rank = rank_for_base_designate(run_dt, run_hour, BASE_GROUP_NAME)
 
@@ -503,17 +517,17 @@ def build_and_transfer_data(run_dt, run_hour, project, **kwargs):
         return
 
     # save to ODPS
-    t = odps_instance.get_table(ODPS_3RD_RANK_RESULT_TABLE)
-    part_spec_dict = {'dt': run_dt, 'hour': run_hour, 'ctime': dt_version}
-    part_spec = ','.join(['{}={}'.format(k, part_spec_dict[k]) for k in part_spec_dict.keys()])
-    with t.open_writer(partition=part_spec, create_partition=True, overwrite=True) as writer:
-        writer.write(list(final_df.itertuples(index=False)))
+    # t = odps_instance.get_table(ODPS_3RD_RANK_RESULT_TABLE)
+    # part_spec_dict = {'dt': run_dt, 'hour': run_hour, 'ctime': dt_version}
+    # part_spec = ','.join(['{}={}'.format(k, part_spec_dict[k]) for k in part_spec_dict.keys()])
+    # with t.open_writer(partition=part_spec, create_partition=True, overwrite=True) as writer:
+    #     writer.write(list(final_df.itertuples(index=False)))
 
     # sync to MySQL
-    data_to_insert = [tuple(row) for row in final_df.itertuples(index=False)]
-    data_columns = list(final_df.columns)
-    mysql = MysqlHelper(CONFIG.MYSQL_CRAWLER_INFO)
-    mysql.batch_insert(RDS_RANK_RESULT_TABLE, data_to_insert, data_columns)
+    # data_to_insert = [tuple(row) for row in final_df.itertuples(index=False)]
+    # data_columns = list(final_df.columns)
+    # mysql = MysqlHelper(CONFIG.MYSQL_CRAWLER_INFO)
+    # mysql.batch_insert(RDS_RANK_RESULT_TABLE, data_to_insert, data_columns)
 
 
 def main_loop():