|
@@ -332,6 +332,30 @@ def predict_test():
|
|
|
|
|
|
redis_helper.del_keys(key_name=config_.UPDATE_ROV_KEY_NAME_APP)
|
|
|
|
|
|
+
|
|
|
+ for app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
|
|
|
+ log_.info(f"app_type = {app_type}")
|
|
|
+ videos_temp = random.sample(filtered_videos, 300)
|
|
|
+ redis_data_temp = {}
|
|
|
+ csv_data_temp = []
|
|
|
+ for video_id in videos_temp:
|
|
|
+ score = random.uniform(0, 100)
|
|
|
+ redis_data_temp[video_id] = score
|
|
|
+ csv_data_temp.append({'video_id': video_id, 'rov_score': score})
|
|
|
+
|
|
|
+ predict_result_filename = f'predict_{app_type}.csv'
|
|
|
+ pack_list_result_to_csv(filename=predict_result_filename,
|
|
|
+ data=csv_data_temp,
|
|
|
+ columns=['video_id', 'rov_score'],
|
|
|
+ sort_columns=['rov_score'],
|
|
|
+ ascending=False)
|
|
|
+
|
|
|
+
|
|
|
+ key_name = f"{config_.RECALL_KEY_NAME_PREFIX_APP_TYPE}{app_type}.{time.strftime('%Y%m%d')}"
|
|
|
+ redis_helper = RedisHelper()
|
|
|
+ redis_helper.add_data_with_zset(key_name=key_name, data=redis_data_temp)
|
|
|
+ log_.info('data to redis finished!')
|
|
|
+
|
|
|
|
|
|
def predict_18_19():
|
|
|
"""预测 app_type:[18, 19]"""
|
|
@@ -388,14 +412,14 @@ def predict_18_19():
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
- log_.info('rov model train start...')
|
|
|
- train_start = time.time()
|
|
|
- train_filename = config_.TRAIN_DATA_FILENAME
|
|
|
- X, Y, videos, fea = process_data(filename=train_filename)
|
|
|
- log_.info('X_shape = {}, Y_sahpe = {}'.format(X.shape, Y.shape))
|
|
|
- train(X, Y, features=fea)
|
|
|
- train_end = time.time()
|
|
|
- log_.info('rov model train end, execute time = {}ms'.format((train_end - train_start)*1000))
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
|
|
|
log_.info('rov model predict start...')
|
|
|
predict_start = time.time()
|