|
@@ -16,6 +16,7 @@ from feature import get_item_features
|
|
|
from lr_model import LrModel
|
|
|
from utils import exe_sql
|
|
|
|
|
|
+
|
|
|
if __name__ == "__main__":
|
|
|
project = 'loghubods'
|
|
|
datetime = sys.argv[1]
|
|
@@ -214,22 +215,22 @@ from candidate_item
|
|
|
print('sql done')
|
|
|
# data.to_csv('./data/ad_out_sample_v2_item.{datetime}'.format(datetime=datetime), sep='\t')
|
|
|
# data = pd.read_csv('./data/ad_out_sample_v2_item.{datetime}'.format(datetime=datetime), sep='\t', dtype=str)
|
|
|
- data.fillna('', inplace=True)
|
|
|
model_key = 'ad_out_v2_model_v1.day'
|
|
|
lr_model = LrModel('model/{}.json'.format(model_key))
|
|
|
item_h_dict = {}
|
|
|
k_col = 'i_id'
|
|
|
dt = datetime
|
|
|
- key_name = f"{config_.KEY_NAME_PREFIX_AD_OUT_MODEL_SCORE_ITEM}{model_key}:{dt}"
|
|
|
- print(key_name)
|
|
|
- for index, row in tqdm(data.iterrows()):
|
|
|
- k = row['i_id']
|
|
|
- item_features = get_item_features(row)
|
|
|
- item_h = lr_model.predict_h(item_features)
|
|
|
- item_h_dict[k] = item_h
|
|
|
- # print(item_features)
|
|
|
- # print(item_h)
|
|
|
- redis_helper.add_data_with_zset(key_name=key_name, data=item_h_dict, expire_time=2 * 24 * 3600)
|
|
|
- with open('{}.json'.format(key_name), 'w') as fout:
|
|
|
+ key_name_prefix = f"{config_.KEY_NAME_PREFIX_AD_OUT_MODEL_SCORE_ITEM}{model_key}:"
|
|
|
+ print(key_name_prefix)
|
|
|
+ with data.open_reader() as reader:
|
|
|
+ for row in reader:
|
|
|
+ k = row['i_id']
|
|
|
+ item_features = get_item_features(row)
|
|
|
+ item_h = lr_model.predict_h(item_features)
|
|
|
+ redis_helper.set_data_to_redis(f"{key_name_prefix}:{k}", item_h, 28 * 3600)
|
|
|
+ item_h_dict[k] = item_h
|
|
|
+ # print(item_features)
|
|
|
+ # print(item_h)
|
|
|
+ with open('{}.json'.format(key_name_prefix), 'w') as fout:
|
|
|
json.dump(item_h_dict, fout, indent=2, ensure_ascii=False, sort_keys=True)
|
|
|
|