|
@@ -0,0 +1,113 @@
|
|
|
+import datetime
|
|
|
+import traceback
|
|
|
+from threading import Timer
|
|
|
+from utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu
|
|
|
+from config import set_config
|
|
|
+from log import Log
|
|
|
+config_, _ = set_config()
|
|
|
+log_ = Log()
|
|
|
+redis_helper = RedisHelper()
|
|
|
+
|
|
|
+features = [
|
|
|
+ 'apptype',
|
|
|
+ 'group',
|
|
|
+ 'adrate',
|
|
|
+ 'sharerate',
|
|
|
+ 'adrate_share'
|
|
|
+]
|
|
|
+
|
|
|
+
|
|
|
+def predict_user_group_share_rate(user_group_initial_df, dt, data_params, rule_params, param):
|
|
|
+ """预估用户组对应的有广告时分享率"""
|
|
|
+
|
|
|
+ data_key = param.get('data')
|
|
|
+ data_param = data_params.get(data_key)
|
|
|
+ rule_key = param.get('rule')
|
|
|
+ rule_param = rule_params.get(rule_key)
|
|
|
+
|
|
|
+
|
|
|
+ user_group_df = user_group_initial_df.copy()
|
|
|
+ user_group_df['apptype'] = user_group_df['apptype'].astype(int)
|
|
|
+ user_group_df = user_group_df[user_group_df['apptype'] == data_param]
|
|
|
+ user_group_df['adrate'].fillna(0, inplace=True)
|
|
|
+ user_group_df['sharerate'].fillna(0, inplace=True)
|
|
|
+ user_group_df['adrate_share'].fillna(0, inplace=True)
|
|
|
+ user_group_df['adrate'] = user_group_df['adrate'].astype(float)
|
|
|
+ user_group_df['sharerate'] = user_group_df['sharerate'].astype(float)
|
|
|
+ user_group_df['adrate_share'] = user_group_df['adrate_share'].astype(float)
|
|
|
+
|
|
|
+
|
|
|
+ user_group_list = rule_param.get('group_list')
|
|
|
+ user_group_df = user_group_df[user_group_df['group'].isin(user_group_list)]
|
|
|
+
|
|
|
+
|
|
|
+ if rule_param.get('remove_no_ad_group') is True:
|
|
|
+ user_group_df = user_group_df[~user_group_df['group'].isin(rule_param.get('no_ad_mid_group_list'))]
|
|
|
+
|
|
|
+
|
|
|
+ user_group_df = user_group_df[user_group_df['adrate'] != 0]
|
|
|
+ user_group_df['group_ad_share_rate'] = \
|
|
|
+ user_group_df['adrate_share'] * user_group_df['sharerate'] / user_group_df['adrate']
|
|
|
+ user_group_df['group_ad_share_rate'].fillna(0, inplace=True)
|
|
|
+
|
|
|
+
|
|
|
+ key_name = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{data_key}:{rule_key}:{dt}"
|
|
|
+ redis_data = {}
|
|
|
+ for index, item in user_group_df.iterrows():
|
|
|
+ redis_data[item['group']] = item['group_ad_share_rate']
|
|
|
+ group_ad_share_rate_mean = user_group_df['group_ad_share_rate'].mean()
|
|
|
+ redis_data['mean_group'] = group_ad_share_rate_mean
|
|
|
+ if len(redis_data) > 0:
|
|
|
+ redis_helper = RedisHelper()
|
|
|
+ redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
|
|
|
+ return user_group_df
|
|
|
+
|
|
|
+
|
|
|
+def update_users_data(project, table, dt, update_params):
|
|
|
+ """预估用户组有广告时分享率"""
|
|
|
+
|
|
|
+ user_group_initial_df = get_feature_data(project=project, table=table, features=features, dt=dt)
|
|
|
+ data_params = update_params.get('data_params')
|
|
|
+ rule_params = update_params.get('rule_params')
|
|
|
+ for param in update_params.get('params_list'):
|
|
|
+ log_.info(f"param = {param} update start...")
|
|
|
+ predict_user_group_share_rate(user_group_initial_df=user_group_initial_df,
|
|
|
+ dt=dt,
|
|
|
+ data_params=data_params,
|
|
|
+ rule_params=rule_params,
|
|
|
+ param=param)
|
|
|
+ log_.info(f"param = {param} update end!")
|
|
|
+
|
|
|
+
|
|
|
+def timer_check():
|
|
|
+ try:
|
|
|
+ update_params = config_.AD_USER_PARAMS_NEW_STRATEGY
|
|
|
+ project = config_.ad_model_data['users_share_rate_new_strategy'].get('project')
|
|
|
+ table = config_.ad_model_data['users_share_rate_new_strategy'].get('table')
|
|
|
+ now_date = datetime.datetime.today()
|
|
|
+ dt = datetime.datetime.strftime(now_date, '%Y%m%d')
|
|
|
+ log_.info(f"now_date: {dt}")
|
|
|
+
|
|
|
+ data_count = data_check(project=project, table=table, dt=dt)
|
|
|
+ if data_count > 0:
|
|
|
+ log_.info(f"ad user group data count = {data_count}")
|
|
|
+
|
|
|
+ update_users_data(project=project, table=table, dt=dt, update_params=update_params)
|
|
|
+ log_.info(f"ad user group data update end!")
|
|
|
+ else:
|
|
|
+
|
|
|
+ Timer(60, timer_check).start()
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ log_.error(f"用户组分享率预测数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
|
|
|
+ send_msg_to_feishu(
|
|
|
+ webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
|
|
|
+ key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
|
|
|
+ msg_text=f"rov-offline{config_.ENV_TEXT} - 用户组分享率预测数据更新失败\n"
|
|
|
+ f"exception: {e}\n"
|
|
|
+ f"traceback: {traceback.format_exc()}"
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ timer_check()
|