|
@@ -354,108 +354,31 @@ public class RankStrategy4RegionMergeModelV553 extends RankStrategy4RegionMergeM
|
|
}
|
|
}
|
|
item.featureMap = featureMap;
|
|
item.featureMap = featureMap;
|
|
}
|
|
}
|
|
-
|
|
|
|
- // 3 排序
|
|
|
|
|
|
+ // 4 排序模型计算
|
|
Map<String, String> sceneFeatureMap = new HashMap<>(0);
|
|
Map<String, String> sceneFeatureMap = new HashMap<>(0);
|
|
-
|
|
|
|
- List<RankItem> items = ScorerUtils.getScorerPipeline("feeds_score_config_20240807.conf")
|
|
|
|
- .scoring(sceneFeatureMap, userFeatureMap, rankItems);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- // 获取VoV预测模型参数
|
|
|
|
- // 融合权重
|
|
|
|
- double alpha_vov = mergeWeight.getOrDefault("alpha_vov", 1.0);
|
|
|
|
-
|
|
|
|
- double vov_thresh = mergeWeight.getOrDefault("vov_thresh", 0.1);
|
|
|
|
-
|
|
|
|
- double view_thresh = mergeWeight.getOrDefault("view_thresh", 1535.0);
|
|
|
|
-
|
|
|
|
- double level50_vov = mergeWeight.getOrDefault("level50_vov", 0.123);
|
|
|
|
-
|
|
|
|
- double level_95_vov = mergeWeight.getOrDefault("level_95_vov", 0.178);
|
|
|
|
-
|
|
|
|
- double beta_vov = mergeWeight.getOrDefault("beta_vov", 100.0);
|
|
|
|
-
|
|
|
|
- List<Double> weightList = new ArrayList<>(7);
|
|
|
|
- weightList.add(mergeWeight.getOrDefault("d2_ago_vov_w", 0.0));
|
|
|
|
- weightList.add(mergeWeight.getOrDefault("d1_ago_vov_w", 0.0));
|
|
|
|
- weightList.add(mergeWeight.getOrDefault("h48_ago_vov_w", 0.0));
|
|
|
|
- weightList.add(mergeWeight.getOrDefault("h24_ago_vov_w", 0.0));
|
|
|
|
- weightList.add(mergeWeight.getOrDefault("h3_ago_vov_w", 0.0));
|
|
|
|
- weightList.add(mergeWeight.getOrDefault("h2_ago_vov_w", 0.0));
|
|
|
|
- weightList.add(mergeWeight.getOrDefault("h1_ago_vov_w", 0.0));
|
|
|
|
-
|
|
|
|
-
|
|
|
|
|
|
+ List<RankItem> items = ScorerUtils.getScorerPipeline("feeds_score_config_20240807.conf").scoring(sceneFeatureMap, userFeatureMap, rankItems);
|
|
|
|
+ // 5 排序公式特征
|
|
Map<String, Map<String, String>> vid2MapFeature = this.getVideoRedisFeature(vids, "redis:vid_hasreturn_rov:");
|
|
Map<String, Map<String, String>> vid2MapFeature = this.getVideoRedisFeature(vids, "redis:vid_hasreturn_rov:");
|
|
- Map<String, Map<String, String>> vid2VovFeatureMap = this.getVideoRedisFeature(vids, "redis:vid_vovhour4rank:");
|
|
|
|
|
|
+ Map<String, Map<String, String>> vid2VovFeatureMap = this.getVideoRedisFeature(vids, "redis:vid_vovh24pred:");
|
|
|
|
+ double alpha_vov = mergeWeight.getOrDefault("alpha_vov", 0.05);
|
|
|
|
+ double func = mergeWeight.getOrDefault("func", 1.0);
|
|
List<Video> result = new ArrayList<>();
|
|
List<Video> result = new ArrayList<>();
|
|
-// String hasReturnRovKey = mergeWeight.getOrDefault("hasReturnRovKey", 1.0) < 0.5 ? "rate_1" : "rate_n";
|
|
|
|
-// Double chooseFunction = mergeWeight.getOrDefault("chooseFunction", 0.0);
|
|
|
|
-
|
|
|
|
for (RankItem item : items) {
|
|
for (RankItem item : items) {
|
|
|
|
+ item.getScoresMap().put("alpha_vov", alpha_vov);
|
|
double score = 0.0;
|
|
double score = 0.0;
|
|
- // 获取其他模型输出score
|
|
|
|
double fmRovOrigin = item.getScoreRov();
|
|
double fmRovOrigin = item.getScoreRov();
|
|
item.getScoresMap().put("fmRovOrigin", fmRovOrigin);
|
|
item.getScoresMap().put("fmRovOrigin", fmRovOrigin);
|
|
double fmRov = restoreScore(fmRovOrigin);
|
|
double fmRov = restoreScore(fmRovOrigin);
|
|
item.getScoresMap().put("fmRov", fmRov);
|
|
item.getScoresMap().put("fmRov", fmRov);
|
|
-
|
|
|
|
-
|
|
|
|
- // 获取VoV输入特征
|
|
|
|
- double h1_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
|
- .getOrDefault("h1_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
|
- double h2_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
|
- .getOrDefault("h2_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
|
- double h3_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
|
- .getOrDefault("h3_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
|
- double h24_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
|
- .getOrDefault("h24_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
|
- double h48_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
|
- .getOrDefault("h48_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
|
- double d1_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
|
- .getOrDefault("d1_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
|
- double d2_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
|
- .getOrDefault("d2_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
|
-
|
|
|
|
- double h1_ago_view = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
|
- .getOrDefault("h1_ago_view", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
|
-
|
|
|
|
- item.getScoresMap().put("h1_ago_vov", h1_ago_vov);
|
|
|
|
- item.getScoresMap().put("h2_ago_vov", h2_ago_vov);
|
|
|
|
- item.getScoresMap().put("h3_ago_vov", h3_ago_vov);
|
|
|
|
- item.getScoresMap().put("h24_ago_vov", h24_ago_vov);
|
|
|
|
- item.getScoresMap().put("h48_ago_vov", h48_ago_vov);
|
|
|
|
- item.getScoresMap().put("d1_ago_vov", d1_ago_vov);
|
|
|
|
- item.getScoresMap().put("d2_ago_vov", d2_ago_vov);
|
|
|
|
-
|
|
|
|
- item.getScoresMap().put("h1_ago_view", h1_ago_view);
|
|
|
|
- item.getScoresMap().put("alpha_vov", alpha_vov);
|
|
|
|
- item.getScoresMap().put("view_thresh", view_thresh);
|
|
|
|
- item.getScoresMap().put("vov_thresh", vov_thresh);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- List<Double> featureList = new ArrayList<>(7);
|
|
|
|
- featureList.add(d2_ago_vov);
|
|
|
|
- featureList.add(d1_ago_vov);
|
|
|
|
- featureList.add(h48_ago_vov);
|
|
|
|
- featureList.add(h24_ago_vov);
|
|
|
|
- featureList.add(h3_ago_vov);
|
|
|
|
- featureList.add(h2_ago_vov);
|
|
|
|
- featureList.add(h1_ago_vov);
|
|
|
|
-
|
|
|
|
- // todo 线性加权 预测VoV
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- double vov_p = calculateScore(featureList, weightList, item, vov_thresh, view_thresh, h1_ago_view, level50_vov, level_95_vov, beta_vov);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- double hasReturnRovScore = Double.parseDouble(vid2MapFeature.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
|
- .getOrDefault("rate_n", "0"));
|
|
|
|
|
|
+ double hasReturnRovScore = Double.parseDouble(vid2MapFeature.getOrDefault(item.getVideoId() + "", new HashMap<>()).getOrDefault("rate_n", "0"));
|
|
item.getScoresMap().put("hasReturnRovScore", hasReturnRovScore);
|
|
item.getScoresMap().put("hasReturnRovScore", hasReturnRovScore);
|
|
- score = fmRov * (1 + hasReturnRovScore) * (1.0 + alpha_vov * vov_p);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- item.getScoresMap().put("vov_p", vov_p);
|
|
|
|
|
|
+ double vovScore = this.calVovScore(item, vid2VovFeatureMap);
|
|
|
|
+ item.getScoresMap().put("vovScore", vovScore);
|
|
|
|
+ if (func == 1){
|
|
|
|
+ score = fmRov * (1 + hasReturnRovScore) + alpha_vov * vovScore;
|
|
|
|
+ }else{
|
|
|
|
+ score = fmRov * (1 + hasReturnRovScore) * (1.0 + alpha_vov * vovScore);
|
|
|
|
+ }
|
|
|
|
|
|
Video video = item.getVideo();
|
|
Video video = item.getVideo();
|
|
video.setScore(score);
|
|
video.setScore(score);
|
|
@@ -474,58 +397,29 @@ public class RankStrategy4RegionMergeModelV553 extends RankStrategy4RegionMergeM
|
|
result.add(video);
|
|
result.add(video);
|
|
}
|
|
}
|
|
result.sort(Comparator.comparingDouble(o -> -o.getSortScore()));
|
|
result.sort(Comparator.comparingDouble(o -> -o.getSortScore()));
|
|
-
|
|
|
|
return result;
|
|
return result;
|
|
}
|
|
}
|
|
|
|
|
|
-
|
|
|
|
- private double calculateScore(List<Double> featureList, List<Double> weightList, RankItem rankItem,
|
|
|
|
- double vov_thresh, double view_thresh, double h1_ago_view, double level50_vov, double level_95_vov, double beta_vov) {
|
|
|
|
- // 检查 h1_ago_view 条件
|
|
|
|
- if (h1_ago_view == -2 || h1_ago_view == -1 || h1_ago_view < view_thresh) {
|
|
|
|
- rankItem.getScoresMap().put("origin_vov_p", 0d);
|
|
|
|
- return 0;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // // 检查 featureList 是否全为 -1
|
|
|
|
- // if (featureList.stream().allMatch(f -> f == -1)) {
|
|
|
|
- // rankItem.getScoresMap().put("origin_vov_p", 0d);
|
|
|
|
- // return 0;
|
|
|
|
- // }
|
|
|
|
-
|
|
|
|
- // 计算有效特征的总权重和得分
|
|
|
|
- double score = 0;
|
|
|
|
- List<Integer> validIndices = new ArrayList<>();
|
|
|
|
-
|
|
|
|
- for (int i = 0; i < featureList.size(); i++) {
|
|
|
|
- if (featureList.get(i) != -1) {
|
|
|
|
- validIndices.add(i);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // 如果没有有效特征,返回 0
|
|
|
|
- if (validIndices.isEmpty()) {
|
|
|
|
- rankItem.getScoresMap().put("origin_vov_p", 0d);
|
|
|
|
- return 0;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // 计算得分,动态调整权重
|
|
|
|
- for (int index : validIndices) {
|
|
|
|
- double weight = weightList.get(index);
|
|
|
|
- score += featureList.get(index) * weight;
|
|
|
|
|
|
+ public double calVovScore(RankItem item, Map<String, Map<String, String>> vid2VovFeatureMap){
|
|
|
|
+ String id = item.getVideoId() + "";
|
|
|
|
+ Map<String, String> featureMap = vid2VovFeatureMap.getOrDefault(id, new HashMap<>());
|
|
|
|
+ double numerator = 0D;
|
|
|
|
+ final Set<String> ups = new HashSet<>(Arrays.asList(
|
|
|
|
+ "1_vovh0分子", "2_vovh1分子", "3_vovh2分子", "4_vovh3分子", "7_vovh6分子", "13_vovh12分子", "25_vovh24分子", "2_vovd1分子"
|
|
|
|
+ ));
|
|
|
|
+ for (String key: ups){
|
|
|
|
+ numerator += Double.parseDouble(featureMap.getOrDefault(key, "0"));
|
|
}
|
|
}
|
|
- rankItem.getScoresMap().put("origin_vov_p", score);
|
|
|
|
- // 调整vov
|
|
|
|
- if (score < vov_thresh) {
|
|
|
|
- score = 0;
|
|
|
|
- } else {
|
|
|
|
- double term1 = 1 / (1 + Math.exp(-1 * beta_vov * (score - level50_vov)));
|
|
|
|
- double term2 = 1 + Math.exp(-1 * beta_vov * (level_95_vov - level50_vov));
|
|
|
|
- score = term1 * term2;
|
|
|
|
|
|
+ double denominator = 0D;
|
|
|
|
+ final Set<String> downs = new HashSet<>(Arrays.asList(
|
|
|
|
+ "1_vovh分母", "2_vovh分母", "3_vovh分母", "4_vovh分母", "7_vovh分母", "13_vovh分母", "25_vovh分母", "2_vovd分母"
|
|
|
|
+ ));
|
|
|
|
+ for (String key: downs){
|
|
|
|
+ denominator += Double.parseDouble(featureMap.getOrDefault(key, "0"));
|
|
}
|
|
}
|
|
- return score;
|
|
|
|
|
|
+ item.getScoresMap().put("numerator", numerator);
|
|
|
|
+ item.getScoresMap().put("denominator", denominator);
|
|
|
|
+ return denominator != 0.0? numerator / denominator: 0.0;
|
|
}
|
|
}
|
|
|
|
|
|
-
|
|
|
|
-
|
|
|
|
}
|
|
}
|