|
@@ -32,6 +32,12 @@ public class RankStrategy4RegionMergeModelV562 extends RankStrategy4RegionMergeM
|
|
|
@ApolloJsonValue("${rank.score.merge.weightv562:}")
|
|
|
private Map<String, Double> mergeWeight;
|
|
|
|
|
|
+ @ApolloJsonValue("${video.vov_model.weightv1:}")
|
|
|
+ private Map<String, Double> vovWeight;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
@Autowired
|
|
|
private FeatureService featureService;
|
|
|
|
|
@@ -332,33 +338,87 @@ public class RankStrategy4RegionMergeModelV562 extends RankStrategy4RegionMergeM
|
|
|
|
|
|
List<RankItem> items = ScorerUtils.getScorerPipeline("feeds_score_config_20240807.conf")
|
|
|
.scoring(sceneFeatureMap, userFeatureMap, rankItems);
|
|
|
- Map<String, Map<String, String>> vid2MapFeature = this.getVideoRedisFeature(vids, "redis:vid_hasreturn_rov:");
|
|
|
- Map<String, Map<String, String>> vid2VovFeatureMap = this.getVideoRedisFeature(vids, "redis:vid_vov_1d3d:");
|
|
|
- double alpha_vov = mergeWeight.getOrDefault("alpha_vov", 2.0);
|
|
|
+
|
|
|
+
|
|
|
+ // 获取VoV预测模型参数
|
|
|
+ // 融合权重
|
|
|
+ double alpha_vov = vovWeight.getOrDefault("alpha_vov", 1.0);
|
|
|
+
|
|
|
+ double vov_thresh = vovWeight.getOrDefault("vov_thresh", 0.1);
|
|
|
+
|
|
|
+ double view_thresh = vovWeight.getOrDefault("view_thresh", 1535.0);
|
|
|
+
|
|
|
+ List<Double> weightList = new ArrayList<>();
|
|
|
+ weightList.add(vovWeight.getOrDefault("d2_ago_vov_w", 0.0));
|
|
|
+ weightList.add(vovWeight.getOrDefault("d1_ago_vov_w", 0.0));
|
|
|
+ weightList.add(vovWeight.getOrDefault("h48_ago_vov_w", 0.0));
|
|
|
+ weightList.add(vovWeight.getOrDefault("h24_ago_vov_w", 0.0));
|
|
|
+ weightList.add(vovWeight.getOrDefault("h3_ago_vov_w", 0.0));
|
|
|
+ weightList.add(vovWeight.getOrDefault("h2_ago_vov_w", 0.0));
|
|
|
+ weightList.add(vovWeight.getOrDefault("h1_ago_vov_w", 0.0));
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ Map<String, Map<String, String>> vid2VovFeatureMap = this.getVideoRedisFeature(vids, "redis:vid_vovhour4rank::");
|
|
|
List<Video> result = new ArrayList<>();
|
|
|
// String hasReturnRovKey = mergeWeight.getOrDefault("hasReturnRovKey", 1.0) < 0.5 ? "rate_1" : "rate_n";
|
|
|
// Double chooseFunction = mergeWeight.getOrDefault("chooseFunction", 0.0);
|
|
|
|
|
|
for (RankItem item : items) {
|
|
|
double score = 0.0;
|
|
|
- double recommend_rate_1d = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
- .getOrDefault("recommend_rate_1d", "0"));
|
|
|
- double recommend_exp_per_1d = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
- .getOrDefault("recommend_exp_per_1d", "0"));
|
|
|
- double vorScore = recommend_rate_1d * recommend_exp_per_1d;
|
|
|
- item.getScoresMap().put("recommend_rate_1d", recommend_rate_1d);
|
|
|
- item.getScoresMap().put("recommend_exp_per_1d", recommend_exp_per_1d);
|
|
|
- item.getScoresMap().put("vorScore", vorScore);
|
|
|
- item.getScoresMap().put("alpha_vov", alpha_vov);
|
|
|
- double hasReturnRovScore = Double.parseDouble(vid2MapFeature.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
- .getOrDefault("rate_n", "0"));
|
|
|
- item.getScoresMap().put("hasReturnRovScore", hasReturnRovScore);
|
|
|
+ // 获取其他模型输出score
|
|
|
double fmRovOrigin = item.getScoreRov();
|
|
|
item.getScoresMap().put("fmRovOrigin", fmRovOrigin);
|
|
|
double fmRov = restoreScore(fmRovOrigin);
|
|
|
item.getScoresMap().put("fmRov", fmRov);
|
|
|
- score = fmRov * (1 + hasReturnRovScore) * (1.0 + alpha_vov * recommend_rate_1d);
|
|
|
|
|
|
+
|
|
|
+ // 获取VoV输入特征
|
|
|
+ double h1_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
+ .getOrDefault("h1_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
+ double h2_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
+ .getOrDefault("h2_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
+ double h3_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
+ .getOrDefault("h3_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
+ double h24_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
+ .getOrDefault("h24_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
+ double h48_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
+ .getOrDefault("h48_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
+ double d1_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
+ .getOrDefault("d1_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
+ double d2_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
+ .getOrDefault("d2_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
+
|
|
|
+ double h1_ago_view = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
+ .getOrDefault("h1_ago_view", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
+
|
|
|
+ item.getScoresMap().put("h1_ago_vov", h1_ago_vov);
|
|
|
+ item.getScoresMap().put("h2_ago_vov", h2_ago_vov);
|
|
|
+ item.getScoresMap().put("h3_ago_vov", h3_ago_vov);
|
|
|
+ item.getScoresMap().put("h24_ago_vov", h24_ago_vov);
|
|
|
+ item.getScoresMap().put("h48_ago_vov", h48_ago_vov);
|
|
|
+ item.getScoresMap().put("d1_ago_vov", d1_ago_vov);
|
|
|
+ item.getScoresMap().put("h1_ago_view", h1_ago_view);
|
|
|
+ item.getScoresMap().put("alpha_vov", alpha_vov);
|
|
|
+ item.getScoresMap().put("view_thresh", view_thresh);
|
|
|
+ item.getScoresMap().put("vov_thresh", vov_thresh);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ List<Double> featureList = new ArrayList<>();
|
|
|
+ featureList.add(d2_ago_vov);
|
|
|
+ featureList.add(d1_ago_vov);
|
|
|
+ featureList.add(h48_ago_vov);
|
|
|
+ featureList.add(h24_ago_vov);
|
|
|
+ featureList.add(h3_ago_vov);
|
|
|
+ featureList.add(h2_ago_vov);
|
|
|
+ featureList.add(h1_ago_vov);
|
|
|
+
|
|
|
+ // todo 线性加权 预测VoV
|
|
|
+ double vov_p = calculateScore(featureList, weightList, vov_thresh, view_thresh, h1_ago_view);
|
|
|
+
|
|
|
+ score = fmRov * (1.0 + alpha_vov * vov_p);
|
|
|
Video video = item.getVideo();
|
|
|
video.setScore(score);
|
|
|
video.setSortScore(score);
|
|
@@ -380,6 +440,50 @@ public class RankStrategy4RegionMergeModelV562 extends RankStrategy4RegionMergeM
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
+ private double calculateScore(List<Double> featureList, List<Double> weightList,
|
|
|
+ double vov_thresh, double view_thresh, double h1_ago_view) {
|
|
|
+ // 检查 h1_ago_view 条件
|
|
|
+ if (h1_ago_view == -2 || h1_ago_view == -1 || h1_ago_view < view_thresh) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ // 检查 featureList 是否全为 -1
|
|
|
+ if (featureList.stream().allMatch(f -> f == -1)) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ // 计算有效特征的总权重和得分
|
|
|
+ double score = 0;
|
|
|
+ List<Integer> validIndices = new ArrayList<>();
|
|
|
+
|
|
|
+ for (int i = 0; i < featureList.size(); i++) {
|
|
|
+ if (featureList.get(i) != -1) {
|
|
|
+ validIndices.add(i);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // 如果没有有效特征,返回 0
|
|
|
+ if (validIndices.isEmpty()) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ // 计算得分,动态调整权重
|
|
|
+ for (int index : validIndices) {
|
|
|
+ double weight = weightList.get(index);
|
|
|
+ score += featureList.get(index) * weight;
|
|
|
+ }
|
|
|
+ // 调整vov
|
|
|
+ if (score < 0.1) {
|
|
|
+ score = 0;
|
|
|
+ } else {
|
|
|
+ double term1 = 1 / (1 + Math.exp(-100 * (score - 0.123)));
|
|
|
+ double term2 = 1 + Math.exp(-100 * (0.178 - 0.123));
|
|
|
+ score = term1 * term2;
|
|
|
+ }
|
|
|
+ return score;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
private void readBucketFile() {
|
|
|
InputStream resourceStream = RankStrategy4RegionMergeModelV562.class.getClassLoader().getResourceAsStream("20240609_bucket_274.txt");
|
|
|
if (resourceStream != null) {
|