|
@@ -1,17 +1,14 @@
|
|
|
package com.tzld.piaoquan.recommend.server.implement;
|
|
|
|
|
|
|
|
|
+import com.tzld.piaoquan.recommend.server.common.base.RankItem;
|
|
|
+import com.tzld.piaoquan.recommend.server.framework.candidiate.Candidate;
|
|
|
+import com.tzld.piaoquan.recommend.server.framework.common.User;
|
|
|
import com.tzld.piaoquan.recommend.server.framework.merger.MergeUtils;
|
|
|
import com.tzld.piaoquan.recommend.server.framework.merger.SimilarityUtils;
|
|
|
import com.tzld.piaoquan.recommend.server.framework.merger.StrategyQueue;
|
|
|
import com.tzld.piaoquan.recommend.server.framework.recaller.BaseRecaller;
|
|
|
import com.tzld.piaoquan.recommend.server.framework.recaller.provider.RedisBackedQueue;
|
|
|
-import com.tzld.piaoquan.recommend.server.common.base.RankItem;
|
|
|
-import com.tzld.piaoquan.recommend.server.framework.common.User;
|
|
|
-import com.tzld.piaoquan.recommend.server.framework.candidiate.Candidate;
|
|
|
-import com.tzld.piaoquan.recommend.server.framework.score.ScorerPipeline;
|
|
|
-import com.tzld.piaoquan.recommend.server.framework.userattention.UserAttentionExtractorPipeline;
|
|
|
-import com.tzld.piaoquan.recommend.server.framework.userattention.UserAttentionExtractorUtils;
|
|
|
import com.tzld.piaoquan.recommend.server.framework.utils.RedisSmartClient;
|
|
|
import com.tzld.piaoquan.recommend.server.gen.recommend.RecommendRequest;
|
|
|
import org.springframework.stereotype.Service;
|
|
@@ -22,8 +19,6 @@ import java.util.HashMap;
|
|
|
import java.util.List;
|
|
|
import java.util.Map;
|
|
|
|
|
|
-import static com.tzld.piaoquan.recommend.server.service.score.ScorerUtils.getScorerPipeline;
|
|
|
-
|
|
|
@Service
|
|
|
public class TopRecommendPipeline {
|
|
|
|
|
@@ -41,7 +36,7 @@ public class TopRecommendPipeline {
|
|
|
int recallNum = 200;
|
|
|
|
|
|
// Step 1: Attention extraction
|
|
|
- long timestamp = System.currentTimeMillis();
|
|
|
+// long timestamp = System.currentTimeMillis();
|
|
|
// UserAttentionExtractorPipeline attentionExtractorPipeline = UserAttentionExtractorUtils.getAtttentionPipeline(UserAttentionExtractorUtils.BASE_CONF);
|
|
|
// attentionExtractorPipeline.extractAttention(requestData, userInfo);
|
|
|
|
|
@@ -58,11 +53,11 @@ public class TopRecommendPipeline {
|
|
|
RedisBackedQueue queueProvider = new RedisBackedQueue(client, 1000L);
|
|
|
|
|
|
BaseRecaller recaller = new BaseRecaller(queueProvider);
|
|
|
- List<RankItem> items = recaller.recalling(requestData, userInfo, requestIndex, new ArrayList<Candidate>(candidates.values()));
|
|
|
+ List<RankItem> items = recaller.recalling(requestData, userInfo, requestIndex, new ArrayList<>(candidates.values()));
|
|
|
|
|
|
|
|
|
// Step 4: Advance Scoring
|
|
|
- timestamp = System.currentTimeMillis();
|
|
|
+// timestamp = System.currentTimeMillis();
|
|
|
// ScorerPipeline scorerPipeline = getScorerPipeline(requestData);
|
|
|
// items = scorerPipeline.scoring(requestData, userInfo, requestIndex, items);
|
|
|
|