|
@@ -0,0 +1,429 @@
|
|
|
+package com.tzld.piaoquan.recommend.server.service.rank.strategy;
|
|
|
+
|
|
|
+import com.ctrip.framework.apollo.spring.annotation.ApolloJsonValue;
|
|
|
+import com.google.common.reflect.TypeToken;
|
|
|
+import com.tzld.piaoquan.recommend.server.common.base.RankItem;
|
|
|
+import com.tzld.piaoquan.recommend.server.model.Video;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.rank.RankParam;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.rank.RankResult;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.rank.RankService;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.rank.extractor.ExtractorUtils;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.rank.extractor.RankExtractorItemTags;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.rank.processor.RankProcessorBoost;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.rank.processor.RankProcessorDensity;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.rank.processor.RankProcessorInsert;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.rank.processor.RankProcessorTagFilter;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.recall.strategy.*;
|
|
|
+import com.tzld.piaoquan.recommend.server.util.CommonCollectionUtils;
|
|
|
+import com.tzld.piaoquan.recommend.server.util.JSONUtils;
|
|
|
+import lombok.extern.slf4j.Slf4j;
|
|
|
+import org.apache.commons.collections4.CollectionUtils;
|
|
|
+import org.apache.commons.lang3.RandomUtils;
|
|
|
+import org.springframework.stereotype.Service;
|
|
|
+
|
|
|
+import java.text.SimpleDateFormat;
|
|
|
+import java.util.*;
|
|
|
+import java.util.stream.Collectors;
|
|
|
+
|
|
|
+/**
|
|
|
+ * @author zhangbo
|
|
|
+ * @desc 地域召回融合 流量池汤姆森
|
|
|
+ */
|
|
|
+@Service
|
|
|
+@Slf4j
|
|
|
+public class RankStrategy4RegionMergeModelV568 extends RankService {
|
|
|
+ @ApolloJsonValue("${rank.score.merge.weightv568:}")
|
|
|
+ private Map<String, Double> mergeWeight;
|
|
|
+ @ApolloJsonValue("${RankStrategy4DensityFilterV2:}")
|
|
|
+ private Map<String, Map<String, Map<String, String>>> filterRules = new HashMap<>();
|
|
|
+ final private String CLASS_NAME = this.getClass().getSimpleName();
|
|
|
+
|
|
|
+ public void duplicate(Set<Long> setVideo, List<Video> videos) {
|
|
|
+ Iterator<Video> iterator = videos.iterator();
|
|
|
+ while (iterator.hasNext()) {
|
|
|
+ Video v = iterator.next();
|
|
|
+ if (setVideo.contains(v.getVideoId())) {
|
|
|
+ iterator.remove();
|
|
|
+ } else {
|
|
|
+ setVideo.add(v.getVideoId());
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ @Override
|
|
|
+ public List<Video> mergeAndRankRovRecall(RankParam param) {
|
|
|
+ Map<String, Double> mergeWeight = this.mergeWeight != null ? this.mergeWeight : new HashMap<>(0);
|
|
|
+ //-------------------融-------------------
|
|
|
+ //-------------------合-------------------
|
|
|
+ //-------------------逻-------------------
|
|
|
+ //-------------------辑-------------------
|
|
|
+
|
|
|
+ List<Video> oldRovs = new ArrayList<>();
|
|
|
+ oldRovs.addAll(extractAndSort(param, RegionHRecallStrategy.PUSH_FORM));
|
|
|
+ oldRovs.addAll(extractAndSort(param, RegionHDupRecallStrategy.PUSH_FORM));
|
|
|
+ oldRovs.addAll(extractAndSort(param, Region24HRecallStrategy.PUSH_FORM));
|
|
|
+ oldRovs.addAll(extractAndSort(param, RegionRelative24HRecallStrategy.PUSH_FORM));
|
|
|
+ oldRovs.addAll(extractAndSort(param, RegionRelative24HDupRecallStrategy.PUSH_FORM));
|
|
|
+ removeDuplicate(oldRovs);
|
|
|
+ int sizeReturn = param.getSize();
|
|
|
+ List<Video> v0 = oldRovs.size() <= sizeReturn
|
|
|
+ ? oldRovs
|
|
|
+ : oldRovs.subList(0, sizeReturn);
|
|
|
+ Set<Long> setVideo = new HashSet<>();
|
|
|
+ this.duplicate(setVideo, v0);
|
|
|
+
|
|
|
+ //-------------------相关性召回 融合+去重-------------------
|
|
|
+ List<Video> v5 = extractAndSort(param, SimHotVideoRecallStrategy.PUSH_FORM);
|
|
|
+ List<Video> v6 = extractAndSort(param, ReturnVideoRecallStrategy.PUSH_FORM);
|
|
|
+ this.duplicate(setVideo, v5);
|
|
|
+ this.duplicate(setVideo, v6);
|
|
|
+ //-------------------流量池直接送 融合+去重-------------------
|
|
|
+ List<Video> v9 = extractAndSort(param, FlowPoolLastDayTopRecallStrategy.PUSH_FORM);
|
|
|
+ this.duplicate(setVideo, v9);
|
|
|
+ //-------------------地域相关召回 融合+去重-------------------
|
|
|
+ List<Video> v1 = extractAndSort(param, RegionRealtimeRecallStrategyV1.PUSH_FORM);
|
|
|
+ this.duplicate(setVideo, v1);
|
|
|
+ //-------------------节日扶持召回 融合+去重-------------------
|
|
|
+ List<Video> v7 = extractAndSort(param, FestivalRecallStrategyV1.PUSH_FORM);
|
|
|
+ this.duplicate(setVideo, v7);
|
|
|
+ List<Video> rovRecallRank = new ArrayList<>();
|
|
|
+ rovRecallRank.addAll(v0);
|
|
|
+ rovRecallRank.addAll(v5.subList(0, Math.min(mergeWeight.getOrDefault("v5", 5.0).intValue(), v5.size())));
|
|
|
+ rovRecallRank.addAll(v6.subList(0, Math.min(mergeWeight.getOrDefault("v6", 5.0).intValue(), v6.size())));
|
|
|
+ rovRecallRank.addAll(v9.subList(0, Math.min(mergeWeight.getOrDefault("v9", 5.0).intValue(), v9.size())));
|
|
|
+ rovRecallRank.addAll(v1.subList(0, Math.min(mergeWeight.getOrDefault("v1", 5.0).intValue(), v1.size())));
|
|
|
+ rovRecallRank.addAll(v7.subList(0, Math.min(mergeWeight.getOrDefault("v7", 5.0).intValue(), v7.size())));
|
|
|
+
|
|
|
+ //-------------------排-------------------
|
|
|
+ //-------------------序-------------------
|
|
|
+ //-------------------逻-------------------
|
|
|
+ //-------------------辑-------------------
|
|
|
+
|
|
|
+ // 1 模型分
|
|
|
+ List<String> rtFeaPart = new ArrayList<>();
|
|
|
+ List<RankItem> items = model(rovRecallRank, param, rtFeaPart);
|
|
|
+ List<String> rtFeaPartKey = new ArrayList<>(Arrays.asList("item_rt_fea_1day_partition", "item_rt_fea_1h_partition"));
|
|
|
+ List<String> rtFeaPartKeyResult = this.redisTemplate.opsForValue().multiGet(rtFeaPartKey);
|
|
|
+ Calendar calendar = Calendar.getInstance();
|
|
|
+ String date = new SimpleDateFormat("yyyyMMdd").format(calendar.getTime());
|
|
|
+ String hour = new SimpleDateFormat("HH").format(calendar.getTime());
|
|
|
+ String rtFeaPart1h = date + hour;
|
|
|
+ if (rtFeaPartKeyResult != null) {
|
|
|
+ if (rtFeaPartKeyResult.get(1) != null) {
|
|
|
+ rtFeaPart1h = rtFeaPartKeyResult.get(1);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // 2 统计分
|
|
|
+ String cur = rtFeaPart1h;
|
|
|
+ List<String> datehours = new LinkedList<>(); // 时间是倒叙的
|
|
|
+ for (int i = 0; i < 24; ++i) {
|
|
|
+ datehours.add(cur);
|
|
|
+ cur = ExtractorUtils.subtractHours(cur, 1);
|
|
|
+ }
|
|
|
+ List<String> datehoursRoot = new LinkedList<>();
|
|
|
+ for (int i = 0; i < 24; ++i) {
|
|
|
+ datehoursRoot.add(String.valueOf(i+1));
|
|
|
+ }
|
|
|
+ // 2.1 item特征提取
|
|
|
+ this.getVideoFeatureFromRedis(items);
|
|
|
+
|
|
|
+
|
|
|
+ for (RankItem item : items) {
|
|
|
+ Map<String, Map<String, Double>> itemRealRootMap = item.getItemRealTimeRootFeature();
|
|
|
+ List<Double> views = getStaticData(itemRealRootMap, datehoursRoot, "exp");
|
|
|
+ List<Double> shares = getStaticData(itemRealRootMap, datehoursRoot, "share");
|
|
|
+ List<Double> allreturns = getStaticData(itemRealRootMap, datehoursRoot, "return");
|
|
|
+
|
|
|
+ // 全部回流的rov和ros
|
|
|
+ List<Double> share2allreturn = getRateData(allreturns, shares, 0.0, 0.0);
|
|
|
+ Double share2allreturnScore = calScoreWeightNoTimeDecay(share2allreturn);
|
|
|
+ item.scoresMap.put("share2allreturnScore", share2allreturnScore);
|
|
|
+ List<Double> view2allreturn = getRateData(allreturns, views, 0.0, 0.0);
|
|
|
+ Double view2allreturnScore = calScoreWeightNoTimeDecay(view2allreturn);
|
|
|
+ item.scoresMap.put("view2allreturnScore", view2allreturnScore);
|
|
|
+
|
|
|
+ // 全部回流
|
|
|
+ Double allreturnsScore = calScoreWeightNoTimeDecay(allreturns);
|
|
|
+ item.scoresMap.put("allreturnsScore", allreturnsScore);
|
|
|
+
|
|
|
+
|
|
|
+ }
|
|
|
+ // 3 融合公式
|
|
|
+ List<Video> result = new ArrayList<>();
|
|
|
+ double f = mergeWeight.getOrDefault("f", 0.1);
|
|
|
+ double g = mergeWeight.getOrDefault("g", 1.0);
|
|
|
+ for (RankItem item : items) {
|
|
|
+ double share2allreturnScore = item.scoresMap.getOrDefault("share2allreturnScore", 0.0);
|
|
|
+ double view2allreturnScore = item.scoresMap.getOrDefault("view2allreturnScore", 0.0);
|
|
|
+ double score = 0.0;
|
|
|
+ double allreturnsScore = item.scoresMap.getOrDefault("allreturnsScore", 0.0);
|
|
|
+ if (allreturnsScore > 100) {
|
|
|
+ score += (f * share2allreturnScore + g * view2allreturnScore);
|
|
|
+ }
|
|
|
+ Video video = item.getVideo();
|
|
|
+ video.setScore(score);
|
|
|
+ video.setSortScore(score);
|
|
|
+ video.setScoreStr(item.getScoreStr());
|
|
|
+ video.setScoresMap(item.getScoresMap());
|
|
|
+ result.add(video);
|
|
|
+ }
|
|
|
+ result.sort(Comparator.comparingDouble(o -> -o.getSortScore()));
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+ public Double calScoreWeightNoTimeDecay(List<Double> data) {
|
|
|
+ Double up = 0.0;
|
|
|
+ Double down = 0.0;
|
|
|
+ for (int i = 0; i < data.size(); ++i) {
|
|
|
+ up += 1.0 * data.get(i);
|
|
|
+ down += 1.0;
|
|
|
+ }
|
|
|
+ return down > 1E-8 ? up / down : 0.0;
|
|
|
+ }
|
|
|
+
|
|
|
+ public List<Double> getRateData(List<Double> ups, List<Double> downs, Double up, Double down) {
|
|
|
+ List<Double> data = new LinkedList<>();
|
|
|
+ for (int i = 0; i < ups.size(); ++i) {
|
|
|
+ if (ExtractorUtils.isDoubleEqualToZero(downs.get(i) + down)) {
|
|
|
+ data.add(0.0);
|
|
|
+ } else {
|
|
|
+ data.add(
|
|
|
+ (ups.get(i) + up) / (downs.get(i) + down)
|
|
|
+ );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return data;
|
|
|
+ }
|
|
|
+
|
|
|
+ public List<Double> getStaticData(Map<String, Map<String, Double>> itemRealMap,
|
|
|
+ List<String> datehours, String key) {
|
|
|
+ List<Double> views = new LinkedList<>();
|
|
|
+ Map<String, Double> tmp = itemRealMap.getOrDefault(key, new HashMap<>());
|
|
|
+ for (String dh : datehours) {
|
|
|
+ views.add(tmp.getOrDefault(dh, 0.0D) +
|
|
|
+ (views.isEmpty() ? 0.0 : views.get(views.size() - 1))
|
|
|
+ );
|
|
|
+ }
|
|
|
+ return views;
|
|
|
+ }
|
|
|
+
|
|
|
+ public List<RankItem> model(List<Video> videos, RankParam param,
|
|
|
+ List<String> rtFeaPart) {
|
|
|
+ List<RankItem> result = new ArrayList<>();
|
|
|
+ if (videos.isEmpty()) {
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ List<RankItem> rankItems = CommonCollectionUtils.toList(videos, RankItem::new);
|
|
|
+ List<Long> videoIds = CommonCollectionUtils.toListDistinct(videos, Video::getVideoId);
|
|
|
+
|
|
|
+ // 2-2: item 实时特征处理
|
|
|
+ List<String> videoRtKeys2 = videoIds.stream().map(r -> "item_rt_fea_1h_" + r)
|
|
|
+ .collect(Collectors.toList());
|
|
|
+ List<String> videoRtFeatures = this.redisTemplate.opsForValue().multiGet(videoRtKeys2);
|
|
|
+
|
|
|
+
|
|
|
+ if (videoRtFeatures != null) {
|
|
|
+ int j = 0;
|
|
|
+ for (RankItem item : rankItems) {
|
|
|
+ String vF = videoRtFeatures.get(j);
|
|
|
+ ++j;
|
|
|
+ if (vF == null) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ Map<String, String> vfMap = new HashMap<>();
|
|
|
+ Map<String, Map<String, Double>> vfMapNew = new HashMap<>();
|
|
|
+ try {
|
|
|
+ vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() {
|
|
|
+ }, vfMap);
|
|
|
+
|
|
|
+ for (Map.Entry<String, String> entry : vfMap.entrySet()) {
|
|
|
+ String value = entry.getValue();
|
|
|
+ if (value == null) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ String[] var1 = value.split(",");
|
|
|
+ Map<String, Double> tmp = new HashMap<>();
|
|
|
+ for (String var2 : var1) {
|
|
|
+ String[] var3 = var2.split(":");
|
|
|
+ tmp.put(var3[0], Double.valueOf(var3[1]));
|
|
|
+ }
|
|
|
+ vfMapNew.put(entry.getKey(), tmp);
|
|
|
+ }
|
|
|
+ item.setItemRealTimeFeature(vfMapNew);
|
|
|
+ } catch (Exception e) {
|
|
|
+ log.error(String.format("parse video item_rt_fea_1h_ json is wrong in {} with {}", this.CLASS_NAME, e));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return rankItems;
|
|
|
+ }
|
|
|
+
|
|
|
+ @Override
|
|
|
+ public RankResult mergeAndSort(RankParam param, List<Video> rovVideos, List<Video> flowVideos) {
|
|
|
+
|
|
|
+ //1 兜底策略,rov池子不足时,用冷启池填补。直接返回。
|
|
|
+ if (CollectionUtils.isEmpty(rovVideos)) {
|
|
|
+ if (param.getSize() < flowVideos.size()) {
|
|
|
+ return new RankResult(flowVideos.subList(0, param.getSize()));
|
|
|
+ } else {
|
|
|
+ return new RankResult(flowVideos);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ //2 根据实验号解析阿波罗参数。
|
|
|
+ String abCode = param.getAbCode();
|
|
|
+ Map<String, Map<String, String>> rulesMap = this.filterRules.getOrDefault(abCode, new HashMap<>(0));
|
|
|
+
|
|
|
+ //3 标签读取
|
|
|
+ if (rulesMap != null && !rulesMap.isEmpty()) {
|
|
|
+ RankExtractorItemTags extractorItemTags = new RankExtractorItemTags(this.redisTemplate);
|
|
|
+ extractorItemTags.processor(rovVideos, flowVideos);
|
|
|
+ }
|
|
|
+ //6 合并结果时间卡控
|
|
|
+ if (rulesMap != null && !rulesMap.isEmpty()) {
|
|
|
+ RankProcessorTagFilter.processor(rovVideos, flowVideos, rulesMap);
|
|
|
+ }
|
|
|
+
|
|
|
+ //4 rov池提权功能
|
|
|
+ RankProcessorBoost.boostByTag(rovVideos, rulesMap);
|
|
|
+
|
|
|
+ //5 rov池强插功能
|
|
|
+ RankProcessorInsert.insertByTag(param, rovVideos, rulesMap);
|
|
|
+
|
|
|
+ //7 流量池按比例强插
|
|
|
+ List<Video> result = new ArrayList<>();
|
|
|
+ for (int i = 0; i < param.getTopK() && i < rovVideos.size(); i++) {
|
|
|
+ result.add(rovVideos.get(i));
|
|
|
+ }
|
|
|
+ double flowPoolP = getFlowPoolP(param);
|
|
|
+ int flowPoolIndex = 0;
|
|
|
+ int rovPoolIndex = param.getTopK();
|
|
|
+ for (int i = 0; i < param.getSize() - param.getTopK(); i++) {
|
|
|
+ double rand = RandomUtils.nextDouble(0, 1);
|
|
|
+ if (rand < flowPoolP) {
|
|
|
+ if (flowPoolIndex < flowVideos.size()) {
|
|
|
+ result.add(flowVideos.get(flowPoolIndex++));
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ if (rovPoolIndex < rovVideos.size()) {
|
|
|
+ result.add(rovVideos.get(rovPoolIndex++));
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (rovPoolIndex >= rovVideos.size()) {
|
|
|
+ for (int i = flowPoolIndex; i < flowVideos.size() && result.size() < param.getSize(); i++) {
|
|
|
+ result.add(flowVideos.get(i));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (flowPoolIndex >= flowVideos.size()) {
|
|
|
+ for (int i = rovPoolIndex; i < rovVideos.size() && result.size() < param.getSize(); i++) {
|
|
|
+ result.add(rovVideos.get(i));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ //8 合并结果密度控制
|
|
|
+ Map<String, Integer> densityRules = new HashMap<>();
|
|
|
+ if (rulesMap != null && !rulesMap.isEmpty()) {
|
|
|
+ for (Map.Entry<String, Map<String, String>> entry : rulesMap.entrySet()) {
|
|
|
+ String key = entry.getKey();
|
|
|
+ Map<String, String> value = entry.getValue();
|
|
|
+ if (value.containsKey("density")) {
|
|
|
+ densityRules.put(key, Integer.valueOf(value.get("density")));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ Set<Long> videosSet = result.stream().map(Video::getVideoId).collect(Collectors.toSet());
|
|
|
+ List<Video> rovRecallRankNew = rovVideos.stream().filter(r -> !videosSet.contains(r.getVideoId())).collect(Collectors.toList());
|
|
|
+ List<Video> flowPoolRankNew = flowVideos.stream().filter(r -> !videosSet.contains(r.getVideoId())).collect(Collectors.toList());
|
|
|
+ List<Video> resultWithDensity = RankProcessorDensity.mergeDensityControl(result,
|
|
|
+ rovRecallRankNew, flowPoolRankNew, densityRules);
|
|
|
+
|
|
|
+ return new RankResult(resultWithDensity);
|
|
|
+ }
|
|
|
+
|
|
|
+ private void getVideoFeatureFromRedis(List<RankItem> items){
|
|
|
+ List<Long> videoIds = CommonCollectionUtils.toListDistinct(items, RankItem::getVideoId);
|
|
|
+ List<String> videoKeys = videoIds.stream().map(r -> "item_rt_fea_1hrootall_" + r)
|
|
|
+ .collect(Collectors.toList());
|
|
|
+ List<String> videoRtFeatures = this.redisTemplate.opsForValue().multiGet(videoKeys);
|
|
|
+ int j = 0;
|
|
|
+ if (videoRtFeatures != null) {
|
|
|
+ for (RankItem item : items) {
|
|
|
+ String vF = videoRtFeatures.get(j);
|
|
|
+ ++j;
|
|
|
+ if (vF == null) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ Map<String, String> vfMap = new HashMap<>();
|
|
|
+ Map<String, Map<String, Double>> vfMapNew = new HashMap<>();
|
|
|
+ try {
|
|
|
+ vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() {
|
|
|
+ }, vfMap);
|
|
|
+ for (Map.Entry<String, String> entry : vfMap.entrySet()) {
|
|
|
+ String value = entry.getValue();
|
|
|
+ if (value == null) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ String[] var1 = value.split(",");
|
|
|
+ Map<String, Double> tmp = new HashMap<>();
|
|
|
+ for (String var2 : var1) {
|
|
|
+ String[] var3 = var2.split(":");
|
|
|
+ tmp.put(var3[0], Double.valueOf(var3[1]));
|
|
|
+ }
|
|
|
+ vfMapNew.put(entry.getKey(), tmp);
|
|
|
+ }
|
|
|
+ item.setItemRealTimeRootFeature(vfMapNew);
|
|
|
+ } catch (Exception e) {
|
|
|
+ log.error(String.format("parse video item_rt_fea_1hrootall_ json is wrong in {} with {}", this.CLASS_NAME, e));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ public static void main(String[] args) {
|
|
|
+// String up1 = "2024031012:513,2024031013:456,2024031014:449,2024031015:262,2024031016:414,2024031017:431,2024031018:643,2024031019:732,2024031020:927,2024031021:859,2024031022:866,2024031023:358,2024031100:133,2024031101:28,2024031102:22,2024031103:15,2024031104:21,2024031105:36,2024031106:157,2024031107:371,2024031108:378,2024031109:216,2024031110:269,2024031111:299,2024031112:196,2024031113:186,2024031114:85,2024031115:82";
|
|
|
+ String up1 = "2024031012:1167,2024031013:1023,2024031014:947,2024031015:664,2024031016:842,2024031017:898,2024031018:1170,2024031019:1439,2024031020:2010,2024031021:1796,2024031022:1779,2024031023:722,2024031100:226,2024031101:50,2024031102:31,2024031103:30,2024031104:38,2024031105:63,2024031106:293,2024031107:839,2024031108:1250,2024031109:858,2024031110:767,2024031111:697,2024031112:506,2024031113:534,2024031114:381,2024031115:278";
|
|
|
+ String down1 = "2024031012:2019,2024031013:1676,2024031014:1626,2024031015:1458,2024031016:1508,2024031017:1510,2024031018:1713,2024031019:1972,2024031020:2500,2024031021:2348,2024031022:2061,2024031023:1253,2024031100:659,2024031101:243,2024031102:191,2024031103:282,2024031104:246,2024031105:439,2024031106:1079,2024031107:1911,2024031108:2023,2024031109:1432,2024031110:1632,2024031111:1183,2024031112:1024,2024031113:938,2024031114:701,2024031115:541";
|
|
|
+
|
|
|
+// String up2 = "2024031012:215,2024031013:242,2024031014:166,2024031015:194,2024031016:209,2024031017:245,2024031018:320,2024031019:332,2024031020:400,2024031021:375,2024031022:636,2024031023:316,2024031100:167,2024031101:45,2024031102:22,2024031103:26,2024031104:12,2024031105:22,2024031106:24,2024031107:143,2024031108:181,2024031109:199,2024031110:194,2024031111:330,2024031112:423,2024031113:421,2024031114:497,2024031115:424";
|
|
|
+ String up2 = "2024031012:409,2024031013:464,2024031014:354,2024031015:474,2024031016:436,2024031017:636,2024031018:709,2024031019:741,2024031020:802,2024031021:904,2024031022:1112,2024031023:639,2024031100:378,2024031101:78,2024031102:47,2024031103:37,2024031104:17,2024031105:49,2024031106:103,2024031107:293,2024031108:457,2024031109:488,2024031110:558,2024031111:711,2024031112:785,2024031113:830,2024031114:974,2024031115:850";
|
|
|
+ String down2 = "2024031012:748,2024031013:886,2024031014:788,2024031015:1029,2024031016:957,2024031017:1170,2024031018:1208,2024031019:1181,2024031020:1275,2024031021:1265,2024031022:1512,2024031023:1190,2024031100:1127,2024031101:486,2024031102:289,2024031103:254,2024031104:197,2024031105:310,2024031106:344,2024031107:693,2024031108:976,2024031109:1045,2024031110:1039,2024031111:1257,2024031112:1202,2024031113:1454,2024031114:1785,2024031115:1544";
|
|
|
+
|
|
|
+ RankStrategy4RegionMergeModelV568 job = new RankStrategy4RegionMergeModelV568();
|
|
|
+ List<Double> l1 = job.getRateData(job.help(up1, "2024031115", 24), job.help(down1, "2024031115", 24), 1., 10.);
|
|
|
+ Double d1 = job.calScoreWeightNoTimeDecay(l1);
|
|
|
+
|
|
|
+ System.out.println(d1);
|
|
|
+
|
|
|
+ List<Double> l2 = job.getRateData(job.help(up2, "2024031115", 24), job.help(down2, "2024031115", 24), 1., 10.);
|
|
|
+ Double d2 = job.calScoreWeightNoTimeDecay(l2);
|
|
|
+
|
|
|
+ System.out.println(d2);
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ List<Double> help(String s, String date, Integer h) {
|
|
|
+ Map<String, Double> maps = Arrays.stream(s.split(",")).map(pair -> pair.split(":"))
|
|
|
+ .collect(Collectors.toMap(
|
|
|
+ arr -> arr[0],
|
|
|
+ arr -> Double.valueOf(arr[1])
|
|
|
+ ));
|
|
|
+ List<String> datehours = new LinkedList<>(); // 时间是倒叙的
|
|
|
+ List<Double> result = new ArrayList<>();
|
|
|
+ for (int i = 0; i < h; ++i) {
|
|
|
+ Double d = (result.isEmpty() ? 0.0 : result.get(result.size() - 1));
|
|
|
+ result.add(d + maps.getOrDefault(date, 0D));
|
|
|
+ datehours.add(date);
|
|
|
+ date = ExtractorUtils.subtractHours(date, 1);
|
|
|
+ }
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+}
|