|
@@ -1,6 +1,7 @@
|
|
|
package com.tzld.piaoquan.recommend.server.service.rank.strategy;
|
|
|
|
|
|
import com.ctrip.framework.apollo.spring.annotation.ApolloJsonValue;
|
|
|
+import com.tzld.piaoquan.recommend.server.common.ThreadPoolFactory;
|
|
|
import com.tzld.piaoquan.recommend.server.common.base.RankItem;
|
|
|
import com.tzld.piaoquan.recommend.server.model.Video;
|
|
|
import com.tzld.piaoquan.recommend.server.service.FeatureService;
|
|
@@ -11,7 +12,9 @@ import com.tzld.piaoquan.recommend.server.service.score.ScorerUtils;
|
|
|
import com.tzld.piaoquan.recommend.server.util.CommonCollectionUtils;
|
|
|
import lombok.extern.slf4j.Slf4j;
|
|
|
import org.apache.commons.collections4.MapUtils;
|
|
|
+import org.apache.commons.math3.util.Pair;
|
|
|
import org.springframework.beans.factory.annotation.Autowired;
|
|
|
+import org.springframework.beans.factory.annotation.Value;
|
|
|
import org.springframework.stereotype.Service;
|
|
|
|
|
|
import java.io.BufferedReader;
|
|
@@ -19,6 +22,8 @@ import java.io.IOException;
|
|
|
import java.io.InputStream;
|
|
|
import java.io.InputStreamReader;
|
|
|
import java.util.*;
|
|
|
+import java.util.concurrent.Future;
|
|
|
+import java.util.concurrent.TimeUnit;
|
|
|
import java.util.stream.Collectors;
|
|
|
|
|
|
@Service
|
|
@@ -26,13 +31,15 @@ import java.util.stream.Collectors;
|
|
|
public class RankStrategy4RegionMergeModelV565 extends RankStrategy4RegionMergeModelBasic {
|
|
|
@ApolloJsonValue("${rank.score.merge.weightv565:}")
|
|
|
private Map<String, Double> mergeWeight;
|
|
|
-
|
|
|
@Autowired
|
|
|
private FeatureService featureService;
|
|
|
|
|
|
Map<String, double[]> bucketsMap = new HashMap<>();
|
|
|
Map<String, Double> bucketsLen = new HashMap<>();
|
|
|
|
|
|
+ @Value("${similarity.concurrent: false}")
|
|
|
+ private boolean similarityConcurrent;
|
|
|
+
|
|
|
@Override
|
|
|
public List<Video> mergeAndRankRovRecall(RankParam param) {
|
|
|
Map<String, Double> mergeWeight = this.mergeWeight != null ? this.mergeWeight : new HashMap<>(0);
|
|
@@ -69,13 +76,12 @@ public class RankStrategy4RegionMergeModelV565 extends RankStrategy4RegionMergeM
|
|
|
rovRecallRank.addAll(v1);
|
|
|
setVideo.addAll(v1.stream().map(Video::getVideoId).collect(Collectors.toSet()));
|
|
|
|
|
|
-
|
|
|
//-------------------排-------------------
|
|
|
//-------------------序-------------------
|
|
|
//-------------------逻-------------------
|
|
|
//-------------------辑-------------------
|
|
|
|
|
|
- // TODO 1 批量获取特征 省份参数要对齐 headvid 要传递过来!
|
|
|
+ // 1 批量获取特征 省份参数要对齐 headvid 要传递过来!
|
|
|
List<String> vids = CommonCollectionUtils.toListDistinct(rovRecallRank, v -> String.valueOf(v.getVideoId()));
|
|
|
|
|
|
// k1:视频、k2:表、k3:特征、v:特征值
|
|
@@ -87,7 +93,7 @@ public class RankStrategy4RegionMergeModelV565 extends RankStrategy4RegionMergeM
|
|
|
Map<String, Map<String, Map<String, String>>> featureOriginVideo = feature.getVideoFeature();
|
|
|
|
|
|
|
|
|
- // TODO 2 特征处理
|
|
|
+ // 2 特征处理
|
|
|
Map<String, Double> userFeatureMapDouble = new HashMap<>();
|
|
|
String mid = param.getMid();
|
|
|
Map<String, String> c1 = featureOriginUser.getOrDefault("alg_mid_feature_play", new HashMap<>());
|
|
@@ -95,8 +101,8 @@ public class RankStrategy4RegionMergeModelV565 extends RankStrategy4RegionMergeM
|
|
|
Map<String, String> c3 = featureOriginUser.getOrDefault("alg_mid_feature_play_tags", new HashMap<>());
|
|
|
Map<String, String> c4 = featureOriginUser.getOrDefault("alg_mid_feature_return_tags", new HashMap<>());
|
|
|
Map<String, String> c5 = featureOriginUser.getOrDefault("alg_mid_feature_share_tags", new HashMap<>());
|
|
|
- Map<String, String> c6 = featureOriginUser.getOrDefault("alg_mid_feature_feed_exp_share_tags", new HashMap<>());
|
|
|
- Map<String, String> c7 = featureOriginUser.getOrDefault("alg_mid_feature_feed_exp_return_tags", new HashMap<>());
|
|
|
+ Map<String, String> c6 = featureOriginUser.getOrDefault("alg_mid_feature_feed_exp_share_tags_v2", new HashMap<>());
|
|
|
+ Map<String, String> c7 = featureOriginUser.getOrDefault("alg_mid_feature_feed_exp_return_tags_v2", new HashMap<>());
|
|
|
Map<String, String> c8 = featureOriginUser.getOrDefault("alg_mid_feature_sharecf", new HashMap<>());
|
|
|
Map<String, String> c9 = featureOriginUser.getOrDefault("alg_mid_feature_returncf", new HashMap<>());
|
|
|
|
|
@@ -166,21 +172,21 @@ public class RankStrategy4RegionMergeModelV565 extends RankStrategy4RegionMergeM
|
|
|
for (RankItem item : rankItems) {
|
|
|
Map<String, Double> featureMap = new HashMap<>();
|
|
|
String vid = item.getVideoId() + "";
|
|
|
- Map<String, String> b1 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_all_exp", new HashMap<>());
|
|
|
+ Map<String, String> b1 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_all_exp_v2", new HashMap<>());
|
|
|
Map<String, String> b2 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_all_share", new HashMap<>());
|
|
|
Map<String, String> b3 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_all_return", new HashMap<>());
|
|
|
- Map<String, String> b6 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_exp2share", new HashMap<>());
|
|
|
+ Map<String, String> b6 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_exp2share_v2", new HashMap<>());
|
|
|
Map<String, String> b7 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_share2return", new HashMap<>());
|
|
|
|
|
|
- Map<String, String> b8 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_feed_noflow_exp", new HashMap<>());
|
|
|
- Map<String, String> b9 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_feed_noflow_root_share", new HashMap<>());
|
|
|
- Map<String, String> b10 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_feed_noflow_root_return", new HashMap<>());
|
|
|
- Map<String, String> b11 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_feed_flow_exp", new HashMap<>());
|
|
|
- Map<String, String> b12 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_feed_flow_root_share", new HashMap<>());
|
|
|
- Map<String, String> b13 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_feed_flow_root_return", new HashMap<>());
|
|
|
- Map<String, String> b17 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_feed_province_exp", new HashMap<>());
|
|
|
- Map<String, String> b18 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_feed_province_root_share", new HashMap<>());
|
|
|
- Map<String, String> b19 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_feed_province_root_return", new HashMap<>());
|
|
|
+ Map<String, String> b8 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_feed_noflow_exp_v2", new HashMap<>());
|
|
|
+ Map<String, String> b9 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_feed_noflow_root_share_v2", new HashMap<>());
|
|
|
+ Map<String, String> b10 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_feed_noflow_root_return_v2", new HashMap<>());
|
|
|
+ Map<String, String> b11 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_feed_flow_exp_v2", new HashMap<>());
|
|
|
+ Map<String, String> b12 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_feed_flow_root_share_v2", new HashMap<>());
|
|
|
+ Map<String, String> b13 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_feed_flow_root_return_v2", new HashMap<>());
|
|
|
+ Map<String, String> b17 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_feed_province_exp_v2", new HashMap<>());
|
|
|
+ Map<String, String> b18 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_feed_province_root_share_v2", new HashMap<>());
|
|
|
+ Map<String, String> b19 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_feed_province_root_return_v2", new HashMap<>());
|
|
|
|
|
|
List<Tuple4> originData = Arrays.asList(
|
|
|
new Tuple4(b1, b2, b3, "b123"),
|
|
@@ -222,14 +228,41 @@ public class RankStrategy4RegionMergeModelV565 extends RankStrategy4RegionMergeM
|
|
|
|
|
|
String title = videoInfo.getOrDefault("title", "");
|
|
|
if (!title.isEmpty()) {
|
|
|
- for (String name : Arrays.asList("c3_feature", "c4_feature", "c5_feature", "c6_feature", "c7_feature")) {
|
|
|
- for (String key_time : Arrays.asList("tags_1d", "tags_3d", "tags_7d")) {
|
|
|
- String tags = c34567Map.getOrDefault(name + "_" + key_time, "");
|
|
|
- if (!tags.isEmpty()) {
|
|
|
- Double[] doubles = ExtractorUtils.funcC34567ForTags(tags, title);
|
|
|
- featureMap.put(name + "_" + key_time + "_matchnum", doubles[0]);
|
|
|
- featureMap.put(name + "_" + key_time + "_maxscore", doubles[1]);
|
|
|
- featureMap.put(name + "_" + key_time + "_avgscore", doubles[2]);
|
|
|
+ if (similarityConcurrent) {
|
|
|
+ List<Future<Pair<String, Double[]>>> futures = new ArrayList<>();
|
|
|
+ for (String name : Arrays.asList("c3_feature", "c4_feature", "c5_feature", "c6_feature", "c7_feature")) {
|
|
|
+ for (String key_time : Arrays.asList("tags_1d", "tags_3d", "tags_7d")) {
|
|
|
+ String key = name + "_" + key_time;
|
|
|
+ String tags = c34567Map.getOrDefault(key, "");
|
|
|
+ if (!tags.isEmpty()) {
|
|
|
+ Future<Pair<String, Double[]>> future = ThreadPoolFactory.defaultPool().submit(() -> {
|
|
|
+ Double[] doubles = ExtractorUtils.funcC34567ForTags(tags, title);
|
|
|
+ return Pair.create(key, doubles);
|
|
|
+ });
|
|
|
+ futures.add(future);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ try {
|
|
|
+ for (Future<Pair<String, Double[]>> future : futures) {
|
|
|
+ Pair<String, Double[]> pair = future.get(1000, TimeUnit.MILLISECONDS);
|
|
|
+ featureMap.put(pair.getFirst() + "_matchnum", pair.getSecond()[0]);
|
|
|
+ featureMap.put(pair.getFirst() + "_maxscore", pair.getSecond()[1]);
|
|
|
+ featureMap.put(pair.getFirst() + "_avgscore", pair.getSecond()[2]);
|
|
|
+ }
|
|
|
+ } catch (Exception e) {
|
|
|
+ log.error("concurrent similarity error", e);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ for (String name : Arrays.asList("c3_feature", "c4_feature", "c5_feature", "c6_feature", "c7_feature")) {
|
|
|
+ for (String key_time : Arrays.asList("tags_1d", "tags_3d", "tags_7d")) {
|
|
|
+ String tags = c34567Map.getOrDefault(name + "_" + key_time, "");
|
|
|
+ if (!tags.isEmpty()) {
|
|
|
+ Double[] doubles = ExtractorUtils.funcC34567ForTags(tags, title);
|
|
|
+ featureMap.put(name + "_" + key_time + "_matchnum", doubles[0]);
|
|
|
+ featureMap.put(name + "_" + key_time + "_maxscore", doubles[1]);
|
|
|
+ featureMap.put(name + "_" + key_time + "_avgscore", doubles[2]);
|
|
|
+ }
|
|
|
}
|
|
|
}
|
|
|
}
|
|
@@ -251,7 +284,7 @@ public class RankStrategy4RegionMergeModelV565 extends RankStrategy4RegionMergeM
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
- Map<String, String> d1 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_recsys_feature_cf_i2i_new", new HashMap<>());
|
|
|
+ Map<String, String> d1 = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_recsys_feature_cf_i2i_new_v2", new HashMap<>());
|
|
|
if (!d1.isEmpty()) {
|
|
|
featureMap.put("d1_exp", Double.parseDouble(d1.getOrDefault("exp", "0")));
|
|
|
featureMap.put("d1_return_n", Double.parseDouble(d1.getOrDefault("return_n", "0")));
|
|
@@ -293,32 +326,109 @@ public class RankStrategy4RegionMergeModelV565 extends RankStrategy4RegionMergeM
|
|
|
item.featureMap = featureMap;
|
|
|
}
|
|
|
|
|
|
- // TODO 3 排序
|
|
|
+ // 3 排序
|
|
|
Map<String, String> sceneFeatureMap = new HashMap<>(0);
|
|
|
|
|
|
- List<RankItem> items = ScorerUtils.getScorerPipeline("feeds_score_config_20240609.conf")
|
|
|
+ List<RankItem> items = ScorerUtils.getScorerPipeline("feeds_score_config_20240807.conf")
|
|
|
.scoring(sceneFeatureMap, userFeatureMap, rankItems);
|
|
|
- String redisScoreKey = mergeWeight.getOrDefault("redisScoreKey", 0.0) < 0.5 ? "redis:vid_hasreturn_rov:" : "redis:vid_hasreturn_rov_7d:";
|
|
|
- Map<String, Map<String, String>> vid2MapFeature = this.getVideoRedisFeature(vids, redisScoreKey);
|
|
|
+
|
|
|
+
|
|
|
+ // 获取VoV预测模型参数
|
|
|
+ // 融合权重
|
|
|
+ double alpha_vov = mergeWeight.getOrDefault("alpha_vov", 1.0);
|
|
|
+
|
|
|
+ double vov_thresh = mergeWeight.getOrDefault("vov_thresh", -1d);
|
|
|
+
|
|
|
+ double view_thresh = mergeWeight.getOrDefault("view_thresh", 1500.0);
|
|
|
+
|
|
|
+ double level50_vov = mergeWeight.getOrDefault("level50_vov", 0.08);
|
|
|
+
|
|
|
+ double level_95_vov = mergeWeight.getOrDefault("level_95_vov", 0.178);
|
|
|
+
|
|
|
+ double beta_vov = mergeWeight.getOrDefault("beta_vov", 10.0);
|
|
|
+
|
|
|
+ List<Double> weightList = new ArrayList<>(3);
|
|
|
+ // weightList.add(mergeWeight.getOrDefault("d2_ago_vov_w", 0.0));
|
|
|
+ // weightList.add(mergeWeight.getOrDefault("d1_ago_vov_w", 0.0));
|
|
|
+ // weightList.add(mergeWeight.getOrDefault("h48_ago_vov_w", 0.0));
|
|
|
+ // weightList.add(mergeWeight.getOrDefault("h24_ago_vov_w", 0.0));
|
|
|
+ weightList.add(mergeWeight.getOrDefault("h3_ago_vov_w", 0.0));
|
|
|
+ weightList.add(mergeWeight.getOrDefault("h2_ago_vov_w", 0.0));
|
|
|
+ weightList.add(mergeWeight.getOrDefault("h1_ago_vov_w", 0.0));
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ Map<String, Map<String, String>> vid2MapFeature = this.getVideoRedisFeature(vids, "redis:vid_hasreturn_rov:");
|
|
|
+ Map<String, Map<String, String>> vid2VovFeatureMap = this.getVideoRedisFeature(vids, "redis:vid_vovhour4rank:");
|
|
|
List<Video> result = new ArrayList<>();
|
|
|
- String hasReturnRovKey = mergeWeight.getOrDefault("hasReturnRovKey", 1.0) < 0.5 ? "rate_1" : "rate_n";
|
|
|
- Double chooseFunction = mergeWeight.getOrDefault("chooseFunction", 0.0);
|
|
|
- Double rosDefault = mergeWeight.getOrDefault("rosDefault", 0.1);
|
|
|
+// String hasReturnRovKey = mergeWeight.getOrDefault("hasReturnRovKey", 1.0) < 0.5 ? "rate_1" : "rate_n";
|
|
|
+// Double chooseFunction = mergeWeight.getOrDefault("chooseFunction", 0.0);
|
|
|
|
|
|
for (RankItem item : items) {
|
|
|
double score = 0.0;
|
|
|
+ // 获取其他模型输出score
|
|
|
+ double fmRovOrigin = item.getScoreRov();
|
|
|
+ item.getScoresMap().put("fmRovOrigin", fmRovOrigin);
|
|
|
+ double fmRov = restoreScore(fmRovOrigin);
|
|
|
+ item.getScoresMap().put("fmRov", fmRov);
|
|
|
+
|
|
|
+
|
|
|
+ // 获取VoV输入特征
|
|
|
+ double h1_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
+ .getOrDefault("h1_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
+ double h2_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
+ .getOrDefault("h2_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
+ double h3_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
+ .getOrDefault("h3_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
+ double h24_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
+ .getOrDefault("h24_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
+ double h48_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
+ .getOrDefault("h48_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
+ double d1_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
+ .getOrDefault("d1_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
+ double d2_ago_vov = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
+ .getOrDefault("d2_ago_vov", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
+
|
|
|
+ double h1_ago_view = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
+ .getOrDefault("h1_ago_view", "-2")); // 如果没有时,默认为多少?? 需要考虑
|
|
|
+
|
|
|
+ item.getScoresMap().put("h1_ago_vov", h1_ago_vov);
|
|
|
+ item.getScoresMap().put("h2_ago_vov", h2_ago_vov);
|
|
|
+ item.getScoresMap().put("h3_ago_vov", h3_ago_vov);
|
|
|
+ item.getScoresMap().put("h24_ago_vov", h24_ago_vov);
|
|
|
+ item.getScoresMap().put("h48_ago_vov", h48_ago_vov);
|
|
|
+ item.getScoresMap().put("d1_ago_vov", d1_ago_vov);
|
|
|
+ item.getScoresMap().put("d2_ago_vov", d2_ago_vov);
|
|
|
+
|
|
|
+ item.getScoresMap().put("h1_ago_view", h1_ago_view);
|
|
|
+ item.getScoresMap().put("alpha_vov", alpha_vov);
|
|
|
+ item.getScoresMap().put("view_thresh", view_thresh);
|
|
|
+ item.getScoresMap().put("vov_thresh", vov_thresh);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ List<Double> featureList = new ArrayList<>(3);
|
|
|
+ // featureList.add(d2_ago_vov);
|
|
|
+ // featureList.add(d1_ago_vov);
|
|
|
+ // featureList.add(h48_ago_vov);
|
|
|
+ // featureList.add(h24_ago_vov);
|
|
|
+ featureList.add(h3_ago_vov);
|
|
|
+ featureList.add(h2_ago_vov);
|
|
|
+ featureList.add(h1_ago_vov);
|
|
|
+
|
|
|
+ // todo 线性加权 预测VoV
|
|
|
+
|
|
|
+
|
|
|
+ double vov_p = calculateScore(featureList, weightList, item, vov_thresh, view_thresh, h1_ago_view, level50_vov, level_95_vov, beta_vov);
|
|
|
+
|
|
|
+
|
|
|
double hasReturnRovScore = Double.parseDouble(vid2MapFeature.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
- .getOrDefault(hasReturnRovKey, "0"));
|
|
|
+ .getOrDefault("rate_n", "0"));
|
|
|
item.getScoresMap().put("hasReturnRovScore", hasReturnRovScore);
|
|
|
- double fmRov = item.getScoreRov();
|
|
|
- item.getScoresMap().put("fmRov", fmRov);
|
|
|
- if (chooseFunction == 0){
|
|
|
- score = fmRov * (rosDefault + hasReturnRovScore);
|
|
|
- }else if (chooseFunction == 1){
|
|
|
- score = fmRov * (1 + Math.log(hasReturnRovScore + 1));
|
|
|
- }else {
|
|
|
- score = fmRov * (1 + hasReturnRovScore);
|
|
|
- }
|
|
|
+ score = fmRov * (1 + hasReturnRovScore) * (1.0 + alpha_vov * vov_p);
|
|
|
+
|
|
|
+
|
|
|
+ item.getScoresMap().put("vov_p", vov_p);
|
|
|
|
|
|
Video video = item.getVideo();
|
|
|
video.setScore(score);
|
|
@@ -341,23 +451,55 @@ public class RankStrategy4RegionMergeModelV565 extends RankStrategy4RegionMergeM
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
- private Map<String, Map<String, String>> extractVideoFeature(Map<String, Map<String, Map<String, String>>> featureMap) {
|
|
|
- // TODO
|
|
|
- return null;
|
|
|
- }
|
|
|
|
|
|
- private Map<String, String> extractSceneFeature(Map<String, Map<String, Map<String, String>>> featureMap) {
|
|
|
- // TODO
|
|
|
- return null;
|
|
|
- }
|
|
|
+ private double calculateScore(List<Double> featureList, List<Double> weightList,RankItem rankItem,
|
|
|
+ double vov_thresh, double view_thresh, double h1_ago_view,double level50_vov,double level_95_vov,double beta_vov) {
|
|
|
+ // 检查 h1_ago_view 条件
|
|
|
+ if (h1_ago_view == -2 || h1_ago_view == -1 || h1_ago_view < view_thresh) {
|
|
|
+ rankItem.getScoresMap().put("origin_vov_p", 0d);
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
|
|
|
- private Map<String, String> extractUserFeature(Map<String, Map<String, Map<String, String>>> featureMap) {
|
|
|
- // TODO
|
|
|
- return null;
|
|
|
+ // // 检查 featureList 是否全为 -1
|
|
|
+ // if (featureList.stream().allMatch(f -> f == -1)) {
|
|
|
+ // rankItem.getScoresMap().put("origin_vov_p", 0d);
|
|
|
+ // return 0;
|
|
|
+ // }
|
|
|
+
|
|
|
+ // 计算有效特征的总权重和得分
|
|
|
+ double score = 0;
|
|
|
+ List<Integer> validIndices = new ArrayList<>();
|
|
|
+
|
|
|
+ for (int i = 0; i < featureList.size(); i++) {
|
|
|
+ if (featureList.get(i) != -1) {
|
|
|
+ validIndices.add(i);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // 如果没有有效特征,返回 0
|
|
|
+ if (validIndices.isEmpty()) {
|
|
|
+ rankItem.getScoresMap().put("origin_vov_p", 0d);
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ // 计算得分,动态调整权重
|
|
|
+ for (int index : validIndices) {
|
|
|
+ double weight = weightList.get(index);
|
|
|
+ score += featureList.get(index) * weight;
|
|
|
+ }
|
|
|
+ rankItem.getScoresMap().put("origin_vov_p", score);
|
|
|
+ // 调整vov
|
|
|
+ if (score < vov_thresh) {
|
|
|
+ score = 0;
|
|
|
+ } else {
|
|
|
+ score = 1 / (1 + Math.exp(-1 * beta_vov * (score - level50_vov)));
|
|
|
+ }
|
|
|
+ return score;
|
|
|
}
|
|
|
|
|
|
+
|
|
|
private void readBucketFile() {
|
|
|
- InputStream resourceStream = RankStrategy4RegionMergeModelV999.class.getClassLoader().getResourceAsStream("20240609_bucket_274.txt");
|
|
|
+ InputStream resourceStream = RankStrategy4RegionMergeModelV562.class.getClassLoader().getResourceAsStream("20240609_bucket_274.txt");
|
|
|
if (resourceStream != null) {
|
|
|
try (BufferedReader reader = new BufferedReader(new InputStreamReader(resourceStream))) {
|
|
|
Map<String, double[]> bucketsMap = new HashMap<>();
|
|
@@ -387,35 +529,7 @@ public class RankStrategy4RegionMergeModelV565 extends RankStrategy4RegionMergeM
|
|
|
} else {
|
|
|
log.error("no bucket file");
|
|
|
}
|
|
|
-
|
|
|
}
|
|
|
|
|
|
- static class Tuple4 {
|
|
|
- public Map<String, String> first;
|
|
|
- public Map<String, String> second;
|
|
|
- public Map<String, String> third;
|
|
|
-
|
|
|
- public String name;
|
|
|
-
|
|
|
- public Tuple4(Map<String, String> first, Map<String, String> second, Map<String, String> third, String name) {
|
|
|
- this.first = first;
|
|
|
- this.second = second;
|
|
|
- this.third = third;
|
|
|
- this.name = name;
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- static class Tuple2 {
|
|
|
- public Map<String, String> first;
|
|
|
-
|
|
|
- public String name;
|
|
|
-
|
|
|
- public Tuple2(Map<String, String> first, String name) {
|
|
|
- this.first = first;
|
|
|
- this.name = name;
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
|
|
|
}
|