|
@@ -0,0 +1,164 @@
|
|
|
+package com.tzld.piaoquan.recommend.server.service.recall.strategy;
|
|
|
+
|
|
|
+import com.tzld.piaoquan.recommend.server.model.Video;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.filter.FilterParam;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.filter.FilterResult;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.flowpool.FlowPoolConfigService;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.flowpool.FlowPoolConstants;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.recall.FilterParamFactory;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.recall.RecallParam;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.score.ScorerUtils;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.score4recall.ScorerPipeline4Recall;
|
|
|
+import lombok.Data;
|
|
|
+import lombok.extern.slf4j.Slf4j;
|
|
|
+import org.apache.commons.collections4.CollectionUtils;
|
|
|
+import org.apache.commons.lang3.RandomUtils;
|
|
|
+import org.apache.commons.lang3.math.NumberUtils;
|
|
|
+import org.apache.commons.lang3.tuple.Pair;
|
|
|
+import org.springframework.beans.factory.annotation.Autowired;
|
|
|
+import org.springframework.stereotype.Service;
|
|
|
+
|
|
|
+import java.math.BigDecimal;
|
|
|
+import java.math.RoundingMode;
|
|
|
+import java.util.*;
|
|
|
+import java.util.stream.Collectors;
|
|
|
+
|
|
|
+import static com.tzld.piaoquan.recommend.server.service.flowpool.FlowPoolConstants.KEY_WITH_LEVEL_FORMAT;
|
|
|
+
|
|
|
+/**
|
|
|
+ * @author zhangbo
|
|
|
+ */
|
|
|
+@Service
|
|
|
+@Slf4j
|
|
|
+public class FlowPoolWithLevelRecallStrategyTomsonFilterDigit extends AbstractFlowPoolWithLevelRecallStrategy {
|
|
|
+
|
|
|
+ @Autowired
|
|
|
+ private FlowPoolConfigService flowPoolConfigService;
|
|
|
+
|
|
|
+ @Override
|
|
|
+ Pair<String, String> flowPoolKeyAndLevel(RecallParam param) {
|
|
|
+ //# 1. 获取流量池各层级分发概率权重
|
|
|
+ Map<String, Double> levelWeightMap = flowPoolConfigService.getLevelWeight();
|
|
|
+
|
|
|
+ // 2. 判断各层级是否有视频需分发
|
|
|
+ List<LevelWeight> availableLevels = new ArrayList<>();
|
|
|
+ for (Map.Entry<String, Double> entry : levelWeightMap.entrySet()) {
|
|
|
+ String levelKey = String.format(KEY_WITH_LEVEL_FORMAT, param.getAppType(), entry.getKey());
|
|
|
+ if (Boolean.TRUE.equals(redisTemplate.hasKey(levelKey))) {
|
|
|
+ LevelWeight lw = new LevelWeight();
|
|
|
+ lw.setLevel(entry.getKey());
|
|
|
+ lw.setLevelKey(levelKey);
|
|
|
+ lw.setWeight(entry.getValue());
|
|
|
+ availableLevels.add(lw);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (CollectionUtils.isEmpty(availableLevels)) {
|
|
|
+ return Pair.of("", "");
|
|
|
+ }
|
|
|
+
|
|
|
+ // 3. 根据可分发层级权重设置分发概率
|
|
|
+ availableLevels.sort(Comparator.comparingDouble(LevelWeight::getWeight));
|
|
|
+
|
|
|
+ double weightSum = availableLevels.stream().mapToDouble(o -> o.getWeight()).sum();
|
|
|
+ BigDecimal weightSumBD = new BigDecimal(weightSum);
|
|
|
+ double level_p_low = 0;
|
|
|
+ double weight_temp = 0;
|
|
|
+ double level_p_up = 0;
|
|
|
+ Map<String, LevelP> level_p_mapping = new HashMap<>();
|
|
|
+ for (LevelWeight lw : availableLevels) {
|
|
|
+ BigDecimal bd = new BigDecimal(weight_temp + lw.getWeight());
|
|
|
+ level_p_up = bd.divide(weightSumBD, 2, RoundingMode.HALF_UP).doubleValue();
|
|
|
+ LevelP levelP = new LevelP();
|
|
|
+ levelP.setMin(level_p_low);
|
|
|
+ levelP.setMax(level_p_up);
|
|
|
+ levelP.setLevelKey(lw.getLevelKey());
|
|
|
+ level_p_mapping.put(lw.level, levelP);
|
|
|
+ level_p_low = level_p_up;
|
|
|
+
|
|
|
+ weight_temp += lw.getWeight();
|
|
|
+ }
|
|
|
+
|
|
|
+ // 4. 随机生成[0,1)之间数,返回相应概率区间的key
|
|
|
+ double random_p = RandomUtils.nextDouble(0, 1);
|
|
|
+ for (Map.Entry<String, LevelP> entry : level_p_mapping.entrySet()) {
|
|
|
+ if (random_p >= entry.getValue().getMin()
|
|
|
+ && random_p <= entry.getValue().getMax()) {
|
|
|
+ return Pair.of(entry.getValue().getLevelKey(), entry.getKey());
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return Pair.of("", "");
|
|
|
+ }
|
|
|
+
|
|
|
+ @Data
|
|
|
+ static class LevelWeight {
|
|
|
+ private String level;
|
|
|
+ private String levelKey;
|
|
|
+ private Double weight;
|
|
|
+ }
|
|
|
+
|
|
|
+ @Data
|
|
|
+ static class LevelP {
|
|
|
+ private String levelKey;
|
|
|
+ private double min;
|
|
|
+ private double max;
|
|
|
+ }
|
|
|
+
|
|
|
+ @Override
|
|
|
+ public String pushFrom() {
|
|
|
+ return FlowPoolConstants.PUSH_FORM;
|
|
|
+ }
|
|
|
+
|
|
|
+ @Override
|
|
|
+ public List<Video> recall(RecallParam param) {
|
|
|
+ Pair<String, String> flowPoolKeyAndLevel = flowPoolKeyAndLevel(param);
|
|
|
+ String flowPoolKey = flowPoolKeyAndLevel.getLeft();
|
|
|
+ String level = flowPoolKeyAndLevel.getRight();
|
|
|
+ List<String> data = Objects.requireNonNull(redisTemplate.opsForSet().members(flowPoolKey)).stream().filter(o ->
|
|
|
+ NumberUtils.toLong(o.split("-")[0], 0) % 10 == param.getLastDigit()).distinct().collect(Collectors.toList());
|
|
|
+
|
|
|
+ if (CollectionUtils.isEmpty(data)) {
|
|
|
+ return null;
|
|
|
+ }
|
|
|
+ Map<String, String> videoFlowPoolMap = new LinkedHashMap<>();
|
|
|
+ Map<Long, String> videoFlowPoolMap_ = new LinkedHashMap<>();
|
|
|
+ for (String value : data) {
|
|
|
+ String[] values = value.split("-");
|
|
|
+ videoFlowPoolMap.put(values[0], values[1]);
|
|
|
+ videoFlowPoolMap_.put(NumberUtils.toLong(values[0], 0), values[1]);
|
|
|
+ }
|
|
|
+ ScorerPipeline4Recall pipeline = ScorerUtils.getScorerPipeline4Recall("feeds_recall_config_tomson.conf");
|
|
|
+ List<List<Pair<Long, Double>>> results = pipeline.recall(videoFlowPoolMap);
|
|
|
+ List<Pair<Long, Double>> result = results.get(0);
|
|
|
+ Map<Long, Double> resultmap = result.stream()
|
|
|
+ .collect(Collectors.toMap(
|
|
|
+ Pair::getLeft, // 键是Pair的left值
|
|
|
+ Pair::getRight, // 值是Pair的right值
|
|
|
+ (existingValue, newValue) -> existingValue, // 如果键冲突,选择保留现有的值(或者你可以根据需要定义其他合并策略)
|
|
|
+ LinkedHashMap::new // 使用LinkedHashMap来保持插入顺序(如果需要的话)
|
|
|
+ ));
|
|
|
+ // 3 召回内部过滤
|
|
|
+ FilterParam filterParam = FilterParamFactory.create(param, result.stream()
|
|
|
+ .map(Pair::getLeft)
|
|
|
+ .collect(Collectors.toList()));
|
|
|
+ filterParam.setForceTruncation(10000);
|
|
|
+ filterParam.setConcurrent(true);
|
|
|
+ filterParam.setNotUsePreView(false);
|
|
|
+ FilterResult filterResult = filterService.filter(filterParam);
|
|
|
+ List<Video> videosResult = new ArrayList<>();
|
|
|
+ if (filterResult != null && CollectionUtils.isNotEmpty(filterResult.getVideoIds())) {
|
|
|
+ filterResult.getVideoIds().forEach(vid -> {
|
|
|
+ Video recallData = new Video();
|
|
|
+ recallData.setVideoId(vid);
|
|
|
+ recallData.setAbCode(param.getAbCode());
|
|
|
+ recallData.setRovScore(resultmap.getOrDefault(vid, 0.0));
|
|
|
+ recallData.setPushFrom(pushFrom());
|
|
|
+ recallData.setFlowPool(videoFlowPoolMap_.get(vid));
|
|
|
+ recallData.setFlowPoolAbtestGroup(param.getFlowPoolAbtestGroup());
|
|
|
+ recallData.setLevel(level);
|
|
|
+ videosResult.add(recallData);
|
|
|
+ });
|
|
|
+ }
|
|
|
+ videosResult.sort(Comparator.comparingDouble(o -> -o.getRovScore()));
|
|
|
+ return videosResult;
|
|
|
+ }
|
|
|
+}
|