| 
					
				 | 
			
			
				@@ -12,24 +12,22 @@ import com.tzld.piaoquan.recommend.server.framework.merger.MergeUtils; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import com.tzld.piaoquan.recommend.server.framework.merger.StrategyQueue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import com.tzld.piaoquan.recommend.server.framework.recaller.BaseRecaller; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import com.tzld.piaoquan.recommend.server.framework.recaller.provider.RedisBackedQueue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-import com.tzld.piaoquan.recommend.server.framework.score.ScorerUtils; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import com.tzld.piaoquan.recommend.server.framework.utils.RedisSmartClient; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import com.tzld.piaoquan.recommend.server.gen.recommend.RecommendRequest; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import com.tzld.piaoquan.recommend.server.model.Video; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import com.tzld.piaoquan.recommend.server.service.rank.extractor.ExtractorUtils; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import com.tzld.piaoquan.recommend.server.service.rank.extractor.RankExtractorItemFeature; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import com.tzld.piaoquan.recommend.server.service.rank.extractor.RankExtractorUserFeature; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.tzld.piaoquan.recommend.server.service.score.ScorerUtils; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import com.tzld.piaoquan.recommend.server.util.CommonCollectionUtils; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import com.tzld.piaoquan.recommend.server.util.JSONUtils; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import org.apache.commons.collections4.CollectionUtils; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import org.slf4j.Logger; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import org.slf4j.LoggerFactory; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import org.springframework.beans.factory.annotation.Autowired; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import org.springframework.beans.factory.annotation.Qualifier; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import org.springframework.beans.factory.annotation.Value; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-import org.springframework.data.redis.connection.RedisConnectionFactory; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-import org.springframework.data.redis.connection.RedisStandaloneConfiguration; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-import org.springframework.data.redis.connection.jedis.JedisConnectionFactory; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import org.springframework.data.redis.core.RedisTemplate; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-import org.springframework.data.redis.serializer.StringRedisSerializer; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import org.springframework.stereotype.Service; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import javax.annotation.PostConstruct; 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -52,7 +50,12 @@ public class TopRecommendPipeline { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     @Resource 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     private RedisSmartClient client; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     @Resource 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    public RedisTemplate<String, String> redisTemplate; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    private RedisTemplate<String, String> redisTemplate; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    @Qualifier("featureRedisTemplate") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    @Autowired 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    private RedisTemplate<String, String> featureRedisTemplate; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     private RedisBackedQueue queueProvider; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     @PostConstruct 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -185,15 +188,15 @@ public class TopRecommendPipeline { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         // Step 4: Advance Scoring 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         stopwatch.reset().start(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        videoScoredByFeature(items); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<RankItem> rankItemList = videoScoredByFeature(items, requestData); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         if (logPrint) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            log.info("traceId = {}, cost = {}, items = {}", requestData.getRequestId(), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    stopwatch.elapsed().toMillis(), JSONUtils.toJson(items)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            log.info("traceId = {}, cost = {}, rankItemList = {}", requestData.getRequestId(), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    stopwatch.elapsed().toMillis(), JSONUtils.toJson(rankItemList)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         stopwatch.reset().start(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         // Step 5: Merger 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        MergeUtils.distributeItemsToMultiQueues(topQueue, items); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        MergeUtils.distributeItemsToMultiQueues(topQueue, rankItemList); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         topQueue.merge(recallNum * 3, userInfo, requestData, requestIndex, 0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         // 多样性融合 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -226,8 +229,9 @@ public class TopRecommendPipeline { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         return down > 1E-8 ? up / down : 0.0; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    private void videoScoredByFeature(List<RankItem> items) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    private List<RankItem> videoScoredByFeature(List<RankItem> items, RecommendRequest recommendRequest) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         // 1 模型分 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<RankItem> rankItemList = model(items, recommendRequest); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         List<String> rtFeaPartKey = new ArrayList<>(Arrays.asList("item_rt_fea_1day_partition", "item_rt_fea_1h_partition")); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         List<String> rtFeaPartKeyResult = this.redisTemplate.opsForValue().multiGet(rtFeaPartKey); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         Calendar calendar = Calendar.getInstance(); 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -246,7 +250,7 @@ public class TopRecommendPipeline { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             datehours.add(cur); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             cur = ExtractorUtils.subtractHours(cur, 1); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        for (RankItem item : items) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for (RankItem item : rankItemList) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             Map<String, String> itemBasicMap = item.getItemBasicFeature(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             Map<String, Map<String, Double>> itemRealMap = item.getItemRealTimeFeature(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             List<Double> views = getStaticData(itemRealMap, datehours, "view_pv_list_1h"); 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -303,7 +307,7 @@ public class TopRecommendPipeline { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         double g = mergeWeight.getOrDefault("g", 2.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         double h = mergeWeight.getOrDefault("h", 240.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         double ifAdd = mergeWeight.getOrDefault("ifAdd", 1.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        for (RankItem item : items) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for (RankItem item : rankItemList) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             double trendScore = item.scoresMap.getOrDefault("trendScore", 0.0) > 1E-8 ? 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     item.scoresMap.getOrDefault("trendScore", 0.0) : 0.0; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             double newVideoScore = item.scoresMap.getOrDefault("newVideoScore", 0.0) > 1E-8 ? 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -329,79 +333,29 @@ public class TopRecommendPipeline { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             // 设置计算好的分数 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             item.setScore(score); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return rankItemList; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    public double calNewVideoScore(Map<String, String> itemBasicMap) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        double existenceDays = Double.valueOf(itemBasicMap.getOrDefault("existence_days", "30")); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        if (existenceDays > 5) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            return 0.0; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    private List<RankItem> model(List<RankItem> items, RecommendRequest param) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (items.isEmpty()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            return items; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        double score = 1.0 / (existenceDays + 10.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        return score; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    public double calTrendScore(List<Double> data) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        double sum = 0.0; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        int size = data.size(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        for (int i = 0; i < size - 4; ++i) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            sum += data.get(i) - data.get(i + 4); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        if (sum * 10 > 0.6) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            sum = 0.6; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            sum = sum * 10; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        if (sum > 0) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            // 为了打断点 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            sum = sum; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        return sum; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    private void duplicate(List<RankItem> items) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        Set<String> ids = new HashSet<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        List<RankItem> result = new ArrayList<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        for (RankItem item : items) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            if (ids.contains(item.getId())) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                continue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            ids.add(item.getId()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            result.add(item); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        items.clear(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        items.addAll(result); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    public List<RankItem> rankByScore(List<RankItem> rankItems, RecommendRequest param){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        List<RankItem> result = new ArrayList<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        if (rankItems.isEmpty()){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            return result; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        RedisStandaloneConfiguration redisSC = new RedisStandaloneConfiguration(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        redisSC.setPort(6379); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        redisSC.setPassword("Wqsd@2019"); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        redisSC.setHostName("r-bp1pi8wyv6lzvgjy5z.redis.rds.aliyuncs.com"); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        RedisConnectionFactory connectionFactory = new JedisConnectionFactory(redisSC); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        RedisTemplate<String, String> redisTemplate = new RedisTemplate<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        redisTemplate.setConnectionFactory(connectionFactory); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        redisTemplate.setDefaultSerializer(new StringRedisSerializer()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        redisTemplate.afterPropertiesSet(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         // 0: 场景特征处理 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        Map<String, String> sceneFeatureMap =  this.getSceneFeature(param); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Map<String, String> sceneFeatureMap = this.getSceneFeature(param); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         // 1: user特征处理 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         Map<String, String> userFeatureMap = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        if (param.getMid() != null && !param.getMid().isEmpty()){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (param.getMid() != null && !param.getMid().isEmpty()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             String midKey = "user_info_4video_" + param.getMid(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            String userFeatureStr = redisTemplate.opsForValue().get(midKey); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            if (userFeatureStr != null){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                try{ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            String userFeatureStr = featureRedisTemplate.opsForValue().get(midKey); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (userFeatureStr != null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                try { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     userFeatureMap = JSONUtils.fromJson(userFeatureStr, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                            new TypeToken<Map<String, String>>() {}, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            new TypeToken<Map<String, String>>() { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                             userFeatureMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                }catch (Exception e){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } catch (Exception e) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     log.error(String.format("parse user json is wrong in {} with {}", this.getClass().getSimpleName(), e)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             } 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -418,188 +372,7 @@ public class TopRecommendPipeline { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 iterator.remove(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        Map<String, String> f1 = RankExtractorUserFeature.getOriginFeature(userFeatureMap, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                new HashSet<String>(Arrays.asList( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        "machineinfo_brand", "machineinfo_model", "machineinfo_platform", "machineinfo_system" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                )) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        ); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        Map<String, String> f2 = RankExtractorUserFeature.getUserRateFeature(userFeatureMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        Map<String, String> f3 = RankExtractorUserFeature.cntFeatureChange(userFeatureMap, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                new HashSet<String>(Arrays.asList( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        "u_1day_exp_cnt", "u_1day_click_cnt", "u_1day_share_cnt", "u_1day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        "u_3day_exp_cnt", "u_3day_click_cnt", "u_3day_share_cnt", "u_3day_return_cnt" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                )) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        ); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        f1.putAll(f2); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        f1.putAll(f3); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        // 2-1: item特征处理 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        final Set<String> itemFeatureSet = new HashSet<>(Arrays.asList( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                "total_time", "play_count_total", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                "i_1day_exp_cnt", "i_1day_click_cnt", "i_1day_share_cnt", "i_1day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                "i_3day_exp_cnt", "i_3day_click_cnt", "i_3day_share_cnt", "i_3day_return_cnt" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        )); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        List<String> videoIds = CommonCollectionUtils.toListDistinct(rankItems, RankItem::getId); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        List<String> videoFeatureKeys = videoIds.stream().map(r-> "video_info_" + r) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                .collect(Collectors.toList()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        List<String> videoFeatures = redisTemplate.opsForValue().multiGet(videoFeatureKeys); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        if (videoFeatures != null){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            for (int i=0; i<videoFeatures.size(); ++i){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                String vF = videoFeatures.get(i); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                Map<String, String> vfMap = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                if (vF == null){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    continue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                try{ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() {}, vfMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    rankItems.get(i).setItemBasicFeature(vfMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    Iterator<Map.Entry<String, String>> iteratorIn = vfMap.entrySet().iterator(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    while (iteratorIn.hasNext()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        Map.Entry<String, String> entry = iteratorIn.next(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        if (!itemFeatureSet.contains(entry.getKey())) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                            iteratorIn.remove(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    Map<String, String> f4 = RankExtractorItemFeature.getItemRateFeature(vfMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    Map<String, String> f5 = RankExtractorItemFeature.cntFeatureChange(vfMap, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                            new HashSet<>(Arrays.asList( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                                    "total_time", "play_count_total", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                                    "i_1day_exp_cnt", "i_1day_click_cnt", "i_1day_share_cnt", "i_1day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                                    "i_3day_exp_cnt", "i_3day_click_cnt", "i_3day_share_cnt", "i_3day_return_cnt")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    ); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    f4.putAll(f5); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    rankItems.get(i).setFeatureMap(f4); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                }catch (Exception e){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    log.error(String.format("parse video json is wrong in {} with {}", this.getClass().getSimpleName(), e)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        // 2-2: item 实时特征处理 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        List<String> rtFeaPartKey = new ArrayList<>(Arrays.asList("item_rt_fea_1day_partition", "item_rt_fea_1h_partition")); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        List<String> rtFeaPartKeyResult = this.redisTemplate.opsForValue().multiGet(rtFeaPartKey); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        Calendar calendar = Calendar.getInstance(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        String date = new SimpleDateFormat("yyyyMMdd").format(calendar.getTime()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        String hour = new SimpleDateFormat("HH").format(calendar.getTime()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        String rtFeaPart1day = date + hour; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        String rtFeaPart1h = date + hour; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        if (rtFeaPartKeyResult != null){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            if (rtFeaPartKeyResult.get(0) != null){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                rtFeaPart1day = rtFeaPartKeyResult.get(0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            if (rtFeaPartKeyResult.get(1) != null){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                rtFeaPart1h = rtFeaPartKeyResult.get(1); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        List<String> videoRtKeys1 = videoIds.stream().map(r-> "item_rt_fea_1day_" + r) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                .collect(Collectors.toList()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        List<String> videoRtKeys2 = videoIds.stream().map(r-> "item_rt_fea_1h_" + r) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                .collect(Collectors.toList()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        videoRtKeys1.addAll(videoRtKeys2); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        List<String> videoRtFeatures = this.redisTemplate.opsForValue().multiGet(videoRtKeys1); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        if (videoRtFeatures != null){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            int j = 0; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            for (RankItem item: rankItems){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                String vF = videoRtFeatures.get(j); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                ++j; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                if (vF == null){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    continue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                Map<String, String> vfMap = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                Map<String, Map<String, Double>> vfMapNew = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                try{ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() {}, vfMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    for (Map.Entry<String, String> entry : vfMap.entrySet()){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        String value = entry.getValue(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        if (value == null){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                            continue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        String [] var1 = value.split(","); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        Map<String, Double> tmp = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        for (String var2 : var1){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                            String [] var3 = var2.split(":"); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                            tmp.put(var3[0], Double.valueOf(var3[1])); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        vfMapNew.put(entry.getKey(), tmp); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                }catch (Exception e){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    log.error(String.format("parse video item_rt_fea_1day_ json is wrong in {} with {}", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                            this.getClass().getSimpleName(), e)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                Map<String, String> f8 = RankExtractorItemFeature.getItemRealtimeRate(vfMapNew, rtFeaPart1day); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                item.getFeatureMap().putAll(f8); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            for (RankItem item: rankItems){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                String vF = videoRtFeatures.get(j); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                ++j; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                if (vF == null){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    continue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                Map<String, String> vfMap = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                Map<String, Map<String, Double>> vfMapNew = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                try{ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() {}, vfMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    for (Map.Entry<String, String> entry : vfMap.entrySet()){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        String value = entry.getValue(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        if (value == null){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                            continue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        String [] var1 = value.split(","); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        Map<String, Double> tmp = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        for (String var2 : var1){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                            String [] var3 = var2.split(":"); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                            tmp.put(var3[0], Double.valueOf(var3[1])); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        vfMapNew.put(entry.getKey(), tmp); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    item.setItemRealTimeFeature(vfMapNew); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                }catch (Exception e){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    log.error(String.format("parse video item_rt_fea_1h_ json is wrong in {} with {}", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                            this.getClass().getSimpleName(), e)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                Map<String, String> f8 = RankExtractorItemFeature.getItemRealtimeRate(vfMapNew, rtFeaPart1h); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                item.getFeatureMap().putAll(f8); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        List<RankItem> rovRecallScore = ScorerUtils.getScorerPipeline(ScorerUtils.BASE_CONF_FEED) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                .scoring(sceneFeatureMap, userFeatureMap, rankItems); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        return rovRecallScore; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    private Map<String, String> getUserFeatureMap(RecommendRequest param, List<RankItem> rankItems) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        Map<String, String> userFeatureMap = new HashMap<>(64); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        if (param.getMid() != null && !param.getMid().isEmpty()){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            String midKey = "user_info_4video_" + param.getMid(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            String userFeatureStr = redisTemplate.opsForValue().get(midKey); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            if (userFeatureStr != null){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                try{ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    userFeatureMap = JSONUtils.fromJson(userFeatureStr, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                            new TypeToken<Map<String, String>>() {}, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                            userFeatureMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                }catch (Exception e){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    log.error(String.format("parse user json is wrong in {} with {}", this.getClass().getSimpleName(), e)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        final Set<String> userFeatureSet = new HashSet<>(Arrays.asList( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                "machineinfo_brand", "machineinfo_model", "machineinfo_platform", "machineinfo_system", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                "u_1day_exp_cnt", "u_1day_click_cnt", "u_1day_share_cnt", "u_1day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                "u_3day_exp_cnt", "u_3day_click_cnt", "u_3day_share_cnt", "u_3day_return_cnt" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        )); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        Iterator<Map.Entry<String, String>> iterator = userFeatureMap.entrySet().iterator(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        while (iterator.hasNext()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            Map.Entry<String, String> entry = iterator.next(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            if (!userFeatureSet.contains(entry.getKey())) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                iterator.remove(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         Map<String, String> f1 = RankExtractorUserFeature.getOriginFeature(userFeatureMap, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 new HashSet<String>(Arrays.asList( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                         "machineinfo_brand", "machineinfo_model", "machineinfo_platform", "machineinfo_system" 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -622,21 +395,22 @@ public class TopRecommendPipeline { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 "i_3day_exp_cnt", "i_3day_click_cnt", "i_3day_share_cnt", "i_3day_return_cnt" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         )); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        List<Long> videoIds = CommonCollectionUtils.toListDistinct(rankItems, RankItem::getVideoId); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        List<String> videoFeatureKeys = videoIds.stream().map(r-> "video_info_" + r) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<String> videoIds = CommonCollectionUtils.toListDistinct(items, RankItem::getId); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<String> videoFeatureKeys = videoIds.stream().map(r -> "video_info_" + r) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 .collect(Collectors.toList()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        List<String> videoFeatures = redisTemplate.opsForValue().multiGet(videoFeatureKeys); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        if (videoFeatures != null){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            for (int i=0; i<videoFeatures.size(); ++i){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<String> videoFeatures = featureRedisTemplate.opsForValue().multiGet(videoFeatureKeys); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (videoFeatures != null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for (int i = 0; i < videoFeatures.size(); ++i) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 String vF = videoFeatures.get(i); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 Map<String, String> vfMap = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                if (vF == null){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if (vF == null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     continue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                try{ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() {}, vfMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                try { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    }, vfMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     Map<String, String> vfMapCopy = new HashMap<>(vfMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    rankItems.get(i).setItemBasicFeature(vfMapCopy); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    items.get(i).setItemBasicFeature(vfMapCopy); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     Iterator<Map.Entry<String, String>> iteratorIn = vfMap.entrySet().iterator(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     while (iteratorIn.hasNext()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                         Map.Entry<String, String> entry = iteratorIn.next(); 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -652,8 +426,8 @@ public class TopRecommendPipeline { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                                     "i_3day_exp_cnt", "i_3day_click_cnt", "i_3day_share_cnt", "i_3day_return_cnt")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     ); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     f4.putAll(f5); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    rankItems.get(i).setFeatureMap(f4); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                }catch (Exception e){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    items.get(i).setFeatureMap(f4); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } catch (Exception e) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     log.error(String.format("parse video json is wrong in {} with {}", this.getClass().getSimpleName(), e)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             } 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -666,37 +440,34 @@ public class TopRecommendPipeline { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         String hour = new SimpleDateFormat("HH").format(calendar.getTime()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         String rtFeaPart1day = date + hour; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         String rtFeaPart1h = date + hour; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        if (rtFeaPartKeyResult != null){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            if (rtFeaPartKeyResult.get(0) != null){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (rtFeaPartKeyResult != null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (rtFeaPartKeyResult.get(0) != null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 rtFeaPart1day = rtFeaPartKeyResult.get(0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            if (rtFeaPartKeyResult.get(1) != null){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (rtFeaPartKeyResult.get(1) != null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 rtFeaPart1h = rtFeaPartKeyResult.get(1); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        List<String> videoRtKeys1 = videoIds.stream().map(r-> "item_rt_fea_1day_" + r) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<String> videoRtKeys1 = videoIds.stream().map(r -> "item_rt_fea_1day_" + r) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 .collect(Collectors.toList()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        List<String> videoRtKeys2 = videoIds.stream().map(r-> "item_rt_fea_1h_" + r) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<String> videoRtKeys2 = videoIds.stream().map(r -> "item_rt_fea_1h_" + r) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 .collect(Collectors.toList()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         videoRtKeys1.addAll(videoRtKeys2); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         List<String> videoRtFeatures = this.redisTemplate.opsForValue().multiGet(videoRtKeys1); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        if (videoRtFeatures != null){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (videoRtFeatures != null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             int j = 0; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            for (RankItem item: rankItems){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for (RankItem item : items) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                String vF = videoRtFeatures.get(j); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 ++j; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                if (j >= rankItems.size()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if (vF == null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     continue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 Map<String, String> vfMap = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 Map<String, Map<String, Double>> vfMapNew = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 try { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    String vF = videoRtFeatures.get(j); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    if (vF == null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        continue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     }, vfMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     for (Map.Entry<String, String> entry : vfMap.entrySet()) { 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -712,25 +483,22 @@ public class TopRecommendPipeline { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                         } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                         vfMapNew.put(entry.getKey(), tmp); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                }catch (Exception e){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } catch (Exception e) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     log.error(String.format("parse video item_rt_fea_1day_ json is wrong in {} with {}", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                             this.getClass().getSimpleName(), e)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 Map<String, String> f8 = RankExtractorItemFeature.getItemRealtimeRate(vfMapNew, rtFeaPart1day); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 item.getFeatureMap().putAll(f8); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            for (RankItem item: rankItems){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for (RankItem item : items) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                String vF = videoRtFeatures.get(j); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 ++j; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                if (j >= rankItems.size()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if (vF == null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     continue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 Map<String, String> vfMap = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 Map<String, Map<String, Double>> vfMapNew = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 try { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    String vF = videoRtFeatures.get(j); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    if (vF == null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        continue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     }, vfMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -742,13 +510,13 @@ public class TopRecommendPipeline { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                         String[] var1 = value.split(","); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                         Map<String, Double> tmp = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                         for (String var2 : var1) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                            String [] var3 = var2.split(":"); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            String[] var3 = var2.split(":"); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                             tmp.put(var3[0], Double.valueOf(var3[1])); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                         } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                         vfMapNew.put(entry.getKey(), tmp); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     item.setItemRealTimeFeature(vfMapNew); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                }catch (Exception e){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } catch (Exception e) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     log.error(String.format("parse video item_rt_fea_1h_ json is wrong in {} with {}", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                             this.getClass().getSimpleName(), e)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 } 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -758,7 +526,50 @@ public class TopRecommendPipeline { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        return userFeatureMap; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<RankItem> rovRecallScore = ScorerUtils.getScorerPipeline(ScorerUtils.BASE_CONF) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                .scoring(sceneFeatureMap, userFeatureMap, items); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return rovRecallScore; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    public double calNewVideoScore(Map<String, String> itemBasicMap) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        double existenceDays = Double.valueOf(itemBasicMap.getOrDefault("existence_days", "30")); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (existenceDays > 5) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            return 0.0; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        double score = 1.0 / (existenceDays + 10.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return score; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    public double calTrendScore(List<Double> data) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        double sum = 0.0; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        int size = data.size(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for (int i = 0; i < size - 4; ++i) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            sum += data.get(i) - data.get(i + 4); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (sum * 10 > 0.6) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            sum = 0.6; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            sum = sum * 10; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (sum > 0) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            // 为了打断点 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            sum = sum; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return sum; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    private void duplicate(List<RankItem> items) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Set<String> ids = new HashSet<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<RankItem> result = new ArrayList<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for (RankItem item : items) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (ids.contains(item.getId())) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                continue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            ids.add(item.getId()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            result.add(item); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        items.clear(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        items.addAll(result); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     private Map<String, String> getSceneFeature(RecommendRequest param) { 
			 |