|
@@ -4,18 +4,31 @@ package com.tzld.piaoquan.recommend.server.service.rank.strategy;
|
|
|
import com.alibaba.fastjson.JSONObject;
|
|
|
import com.ctrip.framework.apollo.spring.annotation.ApolloJsonValue;
|
|
|
import com.google.common.reflect.TypeToken;
|
|
|
+import com.tzld.piaoquan.recommend.feature.domain.video.base.UserFeature;
|
|
|
import com.tzld.piaoquan.recommend.server.common.base.RankItem;
|
|
|
+import com.tzld.piaoquan.recommend.server.common.enums.AppTypeEnum;
|
|
|
import com.tzld.piaoquan.recommend.server.model.Video;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.flowpool.FlowPoolConstants;
|
|
|
import com.tzld.piaoquan.recommend.server.service.rank.RankParam;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.rank.RankResult;
|
|
|
import com.tzld.piaoquan.recommend.server.service.rank.RankService;
|
|
|
import com.tzld.piaoquan.recommend.server.service.rank.extractor.ExtractorUtils;
|
|
|
import com.tzld.piaoquan.recommend.server.service.rank.extractor.RankExtractorItemFeature;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.rank.extractor.RankExtractorItemTags;
|
|
|
import com.tzld.piaoquan.recommend.server.service.rank.extractor.RankExtractorUserFeature;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.rank.processor.RankProcessorBoost;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.rank.processor.RankProcessorDensity;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.rank.processor.RankProcessorInsert;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.rank.processor.RankProcessorTagFilter;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.recall.RecallResult;
|
|
|
import com.tzld.piaoquan.recommend.server.service.recall.strategy.*;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.score.ScoreParam;
|
|
|
import com.tzld.piaoquan.recommend.server.service.score.ScorerUtils;
|
|
|
import com.tzld.piaoquan.recommend.server.util.CommonCollectionUtils;
|
|
|
import com.tzld.piaoquan.recommend.server.util.JSONUtils;
|
|
|
import lombok.extern.slf4j.Slf4j;
|
|
|
+import org.apache.commons.collections4.CollectionUtils;
|
|
|
+import org.apache.commons.lang3.RandomUtils;
|
|
|
import org.springframework.data.redis.connection.RedisConnectionFactory;
|
|
|
import org.springframework.data.redis.connection.RedisStandaloneConfiguration;
|
|
|
import org.springframework.data.redis.connection.jedis.JedisConnectionFactory;
|
|
@@ -29,14 +42,61 @@ import java.util.stream.Collectors;
|
|
|
|
|
|
/**
|
|
|
* @author zhangbo
|
|
|
- * @desc 地域召回融合
|
|
|
+ * @desc 地域召回融合 流量池汤姆森
|
|
|
*/
|
|
|
@Service
|
|
|
@Slf4j
|
|
|
public class RankStrategy4RegionMergeModelV1 extends RankService {
|
|
|
-// @ApolloJsonValue("${video.model.weightv3:}")
|
|
|
-// private Map<String, Double> mergeWeight;
|
|
|
+ @ApolloJsonValue("${rank.score.merge.weightv1:}")
|
|
|
+ private Map<String, Double> mergeWeight;
|
|
|
+ @ApolloJsonValue("${RankStrategy4DensityFilterV2:}")
|
|
|
+ private Map<String,Map<String, Map<String, String>>> filterRules = new HashMap<>();
|
|
|
final private String CLASS_NAME = this.getClass().getSimpleName();
|
|
|
+ @Override
|
|
|
+ public List<Video> mergeAndRankFlowPoolRecall(RankParam param) {
|
|
|
+ List<Video> quickFlowPoolVideos = sortFlowPoolByThompson(param, FlowPoolConstants.QUICK_PUSH_FORM);
|
|
|
+ if (CollectionUtils.isNotEmpty(quickFlowPoolVideos)) {
|
|
|
+ return quickFlowPoolVideos;
|
|
|
+ } else {
|
|
|
+ return sortFlowPoolByThompson(param, FlowPoolConstants.PUSH_FORM);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ public List<Video> sortFlowPoolByThompson(RankParam param, String pushFrom) {
|
|
|
+
|
|
|
+ //初始化 userid
|
|
|
+ UserFeature userFeature = new UserFeature();
|
|
|
+ userFeature.setMid(param.getMid());
|
|
|
+
|
|
|
+ // 初始化RankItem
|
|
|
+ Optional<RecallResult.RecallData> data = param.getRecallResult().getData().stream()
|
|
|
+ .filter(d -> d.getPushFrom().equals(pushFrom))
|
|
|
+ .findFirst();
|
|
|
+ List<Video> videoList = data.get().getVideos();
|
|
|
+ if (videoList == null) {
|
|
|
+ return Collections.emptyList();
|
|
|
+ }
|
|
|
+ List<RankItem> rankItems = new ArrayList<>();
|
|
|
+ for (int i = 0; i < videoList.size(); i++) {
|
|
|
+ RankItem rankItem = new RankItem(videoList.get(i));
|
|
|
+ rankItems.add(rankItem);
|
|
|
+ }
|
|
|
+
|
|
|
+ // 初始化上下文参数
|
|
|
+ ScoreParam scoreParam = convert(param);
|
|
|
+ List<RankItem> rovRecallScore = ScorerUtils.getScorerPipeline(ScorerUtils.FLOWPOOL_CONF)
|
|
|
+ .scoring(scoreParam, userFeature, rankItems);
|
|
|
+
|
|
|
+ if (rovRecallScore == null) {
|
|
|
+ return Collections.emptyList();
|
|
|
+ }
|
|
|
+
|
|
|
+ return CommonCollectionUtils.toList(rovRecallScore, i -> {
|
|
|
+ // hard code 将排序分数 赋值给video的sortScore
|
|
|
+ Video v = i.getVideo();
|
|
|
+ v.setSortScore(i.getScore());
|
|
|
+ return v;
|
|
|
+ });
|
|
|
+ }
|
|
|
public void duplicate(Set<Long> setVideo, List<Video> videos){
|
|
|
Iterator<Video> iterator = videos.iterator();
|
|
|
while(iterator.hasNext()){
|
|
@@ -50,7 +110,13 @@ public class RankStrategy4RegionMergeModelV1 extends RankService {
|
|
|
}
|
|
|
@Override
|
|
|
public List<Video> mergeAndRankRovRecall(RankParam param) {
|
|
|
- //-------------------地域内部融合+去重复-------------------
|
|
|
+ Map<String, Double> mergeWeight = this.mergeWeight != null? this.mergeWeight: new HashMap<>(0);
|
|
|
+ //-------------------融-------------------
|
|
|
+ //-------------------合-------------------
|
|
|
+ //-------------------逻-------------------
|
|
|
+ //-------------------辑-------------------
|
|
|
+
|
|
|
+ //-------------------地域相关召回 融合+去重-------------------
|
|
|
List<Video> rovRecallRank = new ArrayList<>();
|
|
|
List<Video> v1 = extractAndSort(param, RegionRealtimeRecallStrategyV1.PUSH_FORM);
|
|
|
List<Video> v2 = extractAndSort(param, RegionRealtimeRecallStrategyV2.PUSH_FORM);
|
|
@@ -61,43 +127,27 @@ public class RankStrategy4RegionMergeModelV1 extends RankService {
|
|
|
this.duplicate(setVideo, v2);
|
|
|
this.duplicate(setVideo, v3);
|
|
|
this.duplicate(setVideo, v4);
|
|
|
- //-------------------地域 sim returnv2 融合+去重复-------------------
|
|
|
+ //-------------------相关性召回 融合+去重-------------------
|
|
|
List<Video> v5 = extractAndSort(param, SimHotVideoRecallStrategy.PUSH_FORM);
|
|
|
List<Video> v6 = extractAndSort(param, ReturnVideoRecallStrategy.PUSH_FORM);
|
|
|
this.duplicate(setVideo, v5);
|
|
|
this.duplicate(setVideo, v6);
|
|
|
+ //-------------------节日扶持召回 融合+去重-------------------
|
|
|
+ List<Video> v7 = extractAndSort(param, FestivalRecallStrategyV1.PUSH_FORM);
|
|
|
+ this.duplicate(setVideo, v7);
|
|
|
|
|
|
-// rovRecallRank.addAll(v1);
|
|
|
-// rovRecallRank.addAll(v2);
|
|
|
-// rovRecallRank.addAll(v3);
|
|
|
-// rovRecallRank.addAll(v4);
|
|
|
-// rovRecallRank.addAll(v5);
|
|
|
-// rovRecallRank.addAll(v6);
|
|
|
-
|
|
|
- rovRecallRank.addAll(v1.subList(0, Math.min(20, v1.size())));
|
|
|
- rovRecallRank.addAll(v2.subList(0, Math.min(15, v2.size())));
|
|
|
- rovRecallRank.addAll(v3.subList(0, Math.min(10, v3.size())));
|
|
|
- rovRecallRank.addAll(v4.subList(0, Math.min(5, v4.size())));
|
|
|
- rovRecallRank.addAll(v5.subList(0, Math.min(10, v5.size())));
|
|
|
- rovRecallRank.addAll(v6.subList(0, Math.min(10, v6.size())));
|
|
|
+ rovRecallRank.addAll(v1.subList(0, Math.min(mergeWeight.getOrDefault("v1", 20.0).intValue(), v1.size())));
|
|
|
+ rovRecallRank.addAll(v2.subList(0, Math.min(mergeWeight.getOrDefault("v2", 15.0).intValue(), v2.size())));
|
|
|
+ rovRecallRank.addAll(v3.subList(0, Math.min(mergeWeight.getOrDefault("v3", 10.0).intValue(), v3.size())));
|
|
|
+ rovRecallRank.addAll(v4.subList(0, Math.min(mergeWeight.getOrDefault("v4", 5.0).intValue(), v4.size())));
|
|
|
+ rovRecallRank.addAll(v5.subList(0, Math.min(mergeWeight.getOrDefault("v5", 10.0).intValue(), v5.size())));
|
|
|
+ rovRecallRank.addAll(v6.subList(0, Math.min(mergeWeight.getOrDefault("v6", 10.0).intValue(), v6.size())));
|
|
|
+ rovRecallRank.addAll(v7.subList(0, Math.min(mergeWeight.getOrDefault("v7", 10.0).intValue(), v7.size())));
|
|
|
|
|
|
//-------------------排-------------------
|
|
|
//-------------------序-------------------
|
|
|
//-------------------逻-------------------
|
|
|
//-------------------辑-------------------
|
|
|
-// List<String> videoIdKeys = rovRecallRank.stream()
|
|
|
-// .map(t -> param.getRankKeyPrefix() + t.getVideoId())
|
|
|
-// .collect(Collectors.toList());
|
|
|
-// List<String> videoScores = this.redisTemplate.opsForValue().multiGet(videoIdKeys);
|
|
|
-// log.info("rank mergeAndRankRovRecall videoIdKeys={}, videoScores={}", JSONUtils.toJson(videoIdKeys),
|
|
|
-// JSONUtils.toJson(videoScores));
|
|
|
-// if (CollectionUtils.isNotEmpty(videoScores)
|
|
|
-// && videoScores.size() == rovRecallRank.size()) {
|
|
|
-// for (int i = 0; i < videoScores.size(); i++) {
|
|
|
-// rovRecallRank.get(i).setSortScore(NumberUtils.toDouble(videoScores.get(i), 0.0));
|
|
|
-// }
|
|
|
-// Collections.sort(rovRecallRank, Comparator.comparingDouble(o -> -o.getSortScore()));
|
|
|
-// }
|
|
|
|
|
|
// 1 模型分
|
|
|
List<String> rtFeaPart = new ArrayList<>();
|
|
@@ -115,7 +165,7 @@ public class RankStrategy4RegionMergeModelV1 extends RankService {
|
|
|
}
|
|
|
// 2 统计分
|
|
|
String cur = rtFeaPart1h;
|
|
|
- List<String> datehours = new LinkedList<>();
|
|
|
+ List<String> datehours = new LinkedList<>(); // 时间是倒叙的
|
|
|
for (int i=0; i<24; ++i){
|
|
|
datehours.add(cur);
|
|
|
cur = ExtractorUtils.subtractHours(cur, 1);
|
|
@@ -142,14 +192,47 @@ public class RankStrategy4RegionMergeModelV1 extends RankService {
|
|
|
item.scoresMap.put("view2playScore", view2playScore);
|
|
|
item.scoresMap.put("play2shareScore", play2shareScore);
|
|
|
|
|
|
+ // 全部回流
|
|
|
Double allreturnsScore = calScoreWeight(allreturns);
|
|
|
item.scoresMap.put("allreturnsScore", allreturnsScore);
|
|
|
+
|
|
|
+ // 平台回流
|
|
|
+ Double preturnsScore = calScoreWeight(returns);
|
|
|
+ item.scoresMap.put("preturnsScore", preturnsScore);
|
|
|
+
|
|
|
+ // rov的趋势
|
|
|
+ double trendScore = calTrendScore(view2return);
|
|
|
+ item.scoresMap.put("trendScore", trendScore);
|
|
|
+
|
|
|
+ // 新视频提取
|
|
|
+ double newVideoScore = calNewVideoScore(itemBasicMap);
|
|
|
+ item.scoresMap.put("newVideoScore", newVideoScore);
|
|
|
+
|
|
|
}
|
|
|
// 3 融合公式
|
|
|
List<Video> result = new ArrayList<>();
|
|
|
+ double a = mergeWeight.getOrDefault("a", 1.0);
|
|
|
+ double b = mergeWeight.getOrDefault("b", 1.0);
|
|
|
+ double c = mergeWeight.getOrDefault("c", 0.0002);
|
|
|
+ double d = mergeWeight.getOrDefault("d", 1.0);
|
|
|
+ double e = mergeWeight.getOrDefault("e", 1.0);
|
|
|
+ double ifAdd = mergeWeight.getOrDefault("ifAdd", 0.0);
|
|
|
for (RankItem item : items){
|
|
|
- double score = item.getScoreStr() *
|
|
|
- item.scoresMap.getOrDefault("share2returnScore", 0.0);
|
|
|
+ double trendScore = item.scoresMap.getOrDefault("trendScore", 0.0) > 1E-8 ?
|
|
|
+ item.scoresMap.getOrDefault("trendScore", 0.0) : 0.0;
|
|
|
+ double newVideoScore = item.scoresMap.getOrDefault("newVideoScore", 0.0) > 1E-8 ?
|
|
|
+ item.scoresMap.getOrDefault("newVideoScore", 0.0) : 0.0;
|
|
|
+ double strScore = item.getScoreStr();
|
|
|
+ double rosScore = item.scoresMap.getOrDefault("share2returnScore", 0.0);
|
|
|
+ double preturnsScore = Math.log(1 + item.scoresMap.getOrDefault("preturnsScore", 0.0));
|
|
|
+ double score = 0.0;
|
|
|
+ if (ifAdd < 0.5){
|
|
|
+ score = Math.pow(strScore, a) * Math.pow(rosScore, b) + c * preturnsScore +
|
|
|
+ (newVideoScore > 1E-8? d * trendScore * (e + newVideoScore): 0.0);
|
|
|
+ }else {
|
|
|
+ score = a * strScore + b * rosScore + c * preturnsScore +
|
|
|
+ (newVideoScore > 1E-8? d * trendScore * (e + newVideoScore): 0.0);
|
|
|
+ }
|
|
|
Video video = item.getVideo();
|
|
|
video.setScore(score);
|
|
|
video.setSortScore(score);
|
|
@@ -161,6 +244,31 @@ public class RankStrategy4RegionMergeModelV1 extends RankService {
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
+ public double calNewVideoScore(Map<String, String> itemBasicMap){
|
|
|
+ double existenceDays = Double.valueOf(itemBasicMap.getOrDefault("existence_days", "30"));
|
|
|
+ if (existenceDays > 5){
|
|
|
+ return 0.0;
|
|
|
+ }
|
|
|
+ double score = 1.0 / (existenceDays + 10.0);
|
|
|
+ return score;
|
|
|
+ }
|
|
|
+ public double calTrendScore(List<Double> data){
|
|
|
+ double sum = 0.0;
|
|
|
+ int size = data.size();
|
|
|
+ for (int i=0; i<size-4; ++i){
|
|
|
+ sum += data.get(i) - data.get(i+4);
|
|
|
+ }
|
|
|
+ if (sum * 10 > 0.6){
|
|
|
+ sum = 0.6;
|
|
|
+ }else{
|
|
|
+ sum = sum * 10;
|
|
|
+ }
|
|
|
+ if (sum > 0){
|
|
|
+ // 为了打断点
|
|
|
+ sum = sum;
|
|
|
+ }
|
|
|
+ return sum;
|
|
|
+ }
|
|
|
public Double calScoreWeight(List<Double> data){
|
|
|
Double up = 0.0;
|
|
|
Double down = 0.0;
|
|
@@ -179,7 +287,6 @@ public class RankStrategy4RegionMergeModelV1 extends RankService {
|
|
|
}
|
|
|
return data;
|
|
|
}
|
|
|
-
|
|
|
public List<Double> getStaticData(Map<String, Map<String, Double>> itemRealMap,
|
|
|
List<String> datehours, String key){
|
|
|
List<Double> views = new LinkedList<>();
|
|
@@ -191,9 +298,8 @@ public class RankStrategy4RegionMergeModelV1 extends RankService {
|
|
|
}
|
|
|
return views;
|
|
|
}
|
|
|
-
|
|
|
public List<RankItem> model(List<Video> videos, RankParam param,
|
|
|
- List<String> rtFeaPart){
|
|
|
+ List<String> rtFeaPart){
|
|
|
List<RankItem> result = new ArrayList<>();
|
|
|
if (videos.isEmpty()){
|
|
|
return result;
|
|
@@ -282,7 +388,8 @@ public class RankStrategy4RegionMergeModelV1 extends RankService {
|
|
|
}
|
|
|
try{
|
|
|
vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() {}, vfMap);
|
|
|
- rankItems.get(i).setItemBasicFeature(vfMap);
|
|
|
+ Map<String, String> vfMapCopy = new HashMap<>(vfMap);
|
|
|
+ rankItems.get(i).setItemBasicFeature(vfMapCopy);
|
|
|
Iterator<Map.Entry<String, String>> iteratorIn = vfMap.entrySet().iterator();
|
|
|
while (iteratorIn.hasNext()) {
|
|
|
Map.Entry<String, String> entry = iteratorIn.next();
|
|
@@ -407,7 +514,6 @@ public class RankStrategy4RegionMergeModelV1 extends RankService {
|
|
|
// log.info(obj.toString());
|
|
|
return rovRecallScore;
|
|
|
}
|
|
|
-
|
|
|
private Map<String, String> getSceneFeature(RankParam param) {
|
|
|
Map<String, String> sceneFeatureMap = new HashMap<>();
|
|
|
String provinceCn = param.getProvince();
|
|
@@ -437,5 +543,92 @@ public class RankStrategy4RegionMergeModelV1 extends RankService {
|
|
|
|
|
|
return sceneFeatureMap;
|
|
|
}
|
|
|
+ @Override
|
|
|
+ public RankResult mergeAndSort(RankParam param, List<Video> rovVideos, List<Video> flowVideos) {
|
|
|
+
|
|
|
+ //1 兜底策略,rov池子不足时,用冷启池填补。直接返回。
|
|
|
+ if (CollectionUtils.isEmpty(rovVideos)) {
|
|
|
+ if (param.getSize() < flowVideos.size()) {
|
|
|
+ return new RankResult(flowVideos.subList(0, param.getSize()));
|
|
|
+ } else {
|
|
|
+ return new RankResult(flowVideos);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ //2 根据实验号解析阿波罗参数。
|
|
|
+ String abCode = param.getAbCode();
|
|
|
+ Map<String, Map<String, String>> rulesMap = this.filterRules.getOrDefault(abCode, new HashMap<>(0));
|
|
|
+
|
|
|
+ //3 标签读取
|
|
|
+ if (rulesMap != null && !rulesMap.isEmpty()){
|
|
|
+ RankExtractorItemTags extractorItemTags = new RankExtractorItemTags(this.redisTemplate);
|
|
|
+ extractorItemTags.processor(rovVideos, flowVideos);
|
|
|
+ }
|
|
|
+ //6 合并结果时间卡控
|
|
|
+ if (rulesMap != null && !rulesMap.isEmpty()){
|
|
|
+ RankProcessorTagFilter.processor(rovVideos, flowVideos, rulesMap);
|
|
|
+ }
|
|
|
+
|
|
|
+ //4 rov池提权功能
|
|
|
+ RankProcessorBoost.boostByTag(rovVideos, rulesMap);
|
|
|
+
|
|
|
+ //5 rov池强插功能
|
|
|
+ RankProcessorInsert.insertByTag(param, rovVideos, rulesMap);
|
|
|
+
|
|
|
+ //7 流量池按比例强插
|
|
|
+ List<Video> result = new ArrayList<>();
|
|
|
+ for (int i = 0; i < param.getTopK() && i < rovVideos.size(); i++) {
|
|
|
+ result.add(rovVideos.get(i));
|
|
|
+ }
|
|
|
+ double flowPoolP = getFlowPoolP(param);
|
|
|
+ int flowPoolIndex = 0;
|
|
|
+ int rovPoolIndex = param.getTopK();
|
|
|
+ for (int i = 0; i < param.getSize() - param.getTopK(); i++) {
|
|
|
+ double rand = RandomUtils.nextDouble(0, 1);
|
|
|
+ log.info("rand={}, flowPoolP={}", rand, flowPoolP);
|
|
|
+ if (rand < flowPoolP) {
|
|
|
+ if (flowPoolIndex < flowVideos.size()) {
|
|
|
+ result.add(flowVideos.get(flowPoolIndex++));
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ if (rovPoolIndex < rovVideos.size()) {
|
|
|
+ result.add(rovVideos.get(rovPoolIndex++));
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (rovPoolIndex >= rovVideos.size()) {
|
|
|
+ for (int i = flowPoolIndex; i < flowVideos.size() && result.size() < param.getSize(); i++) {
|
|
|
+ result.add(flowVideos.get(i));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (flowPoolIndex >= flowVideos.size()) {
|
|
|
+ for (int i = rovPoolIndex; i < rovVideos.size() && result.size() < param.getSize(); i++) {
|
|
|
+ result.add(rovVideos.get(i));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ //8 合并结果密度控制
|
|
|
+ Map<String, Integer> densityRules = new HashMap<>();
|
|
|
+ if (rulesMap != null && !rulesMap.isEmpty()) {
|
|
|
+ for (Map.Entry<String, Map<String, String>> entry : rulesMap.entrySet()) {
|
|
|
+ String key = entry.getKey();
|
|
|
+ Map<String, String> value = entry.getValue();
|
|
|
+ if (value.containsKey("density")) {
|
|
|
+ densityRules.put(key, Integer.valueOf(value.get("density")));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ Set<Long> videosSet = result.stream().map(Video::getVideoId).collect(Collectors.toSet());
|
|
|
+ List<Video> rovRecallRankNew = rovVideos.stream().filter(r -> !videosSet.contains(r.getVideoId())).collect(Collectors.toList());
|
|
|
+ List<Video> flowPoolRankNew = flowVideos.stream().filter(r -> !videosSet.contains(r.getVideoId())).collect(Collectors.toList());
|
|
|
+ List<Video> resultWithDensity = RankProcessorDensity.mergeDensityControl(result,
|
|
|
+ rovRecallRankNew, flowPoolRankNew, densityRules);
|
|
|
+
|
|
|
+ return new RankResult(resultWithDensity);
|
|
|
+ }
|
|
|
|
|
|
}
|