|
@@ -1,6 +1,7 @@
|
|
|
package com.tzld.piaoquan.recommend.server.service.rank.strategy;
|
|
|
|
|
|
import com.ctrip.framework.apollo.spring.annotation.ApolloJsonValue;
|
|
|
+import com.tzld.piaoquan.recommend.server.common.ThreadPoolFactory;
|
|
|
import com.tzld.piaoquan.recommend.server.common.base.RankItem;
|
|
|
import com.tzld.piaoquan.recommend.server.model.Video;
|
|
|
import com.tzld.piaoquan.recommend.server.service.FeatureService;
|
|
@@ -11,7 +12,9 @@ import com.tzld.piaoquan.recommend.server.service.score.ScorerUtils;
|
|
|
import com.tzld.piaoquan.recommend.server.util.CommonCollectionUtils;
|
|
|
import lombok.extern.slf4j.Slf4j;
|
|
|
import org.apache.commons.collections4.MapUtils;
|
|
|
+import org.apache.commons.math3.util.Pair;
|
|
|
import org.springframework.beans.factory.annotation.Autowired;
|
|
|
+import org.springframework.beans.factory.annotation.Value;
|
|
|
import org.springframework.stereotype.Service;
|
|
|
|
|
|
import java.io.BufferedReader;
|
|
@@ -19,6 +22,9 @@ import java.io.IOException;
|
|
|
import java.io.InputStream;
|
|
|
import java.io.InputStreamReader;
|
|
|
import java.util.*;
|
|
|
+import java.util.concurrent.Callable;
|
|
|
+import java.util.concurrent.Future;
|
|
|
+import java.util.concurrent.TimeUnit;
|
|
|
import java.util.stream.Collectors;
|
|
|
|
|
|
@Service
|
|
@@ -33,6 +39,9 @@ public class RankStrategy4RegionMergeModelV563 extends RankStrategy4RegionMergeM
|
|
|
Map<String, double[]> bucketsMap = new HashMap<>();
|
|
|
Map<String, Double> bucketsLen = new HashMap<>();
|
|
|
|
|
|
+ @Value("${similarity.concurrent: false}")
|
|
|
+ private boolean similarityConcurrent;
|
|
|
+
|
|
|
@Override
|
|
|
public List<Video> mergeAndRankRovRecall(RankParam param) {
|
|
|
Map<String, Double> mergeWeight = this.mergeWeight != null ? this.mergeWeight : new HashMap<>(0);
|
|
@@ -63,7 +72,7 @@ public class RankStrategy4RegionMergeModelV563 extends RankStrategy4RegionMergeM
|
|
|
rovRecallRank.addAll(v6);
|
|
|
setVideo.addAll(v6.stream().map(Video::getVideoId).collect(Collectors.toSet()));
|
|
|
//-------------------新地域召回------------------
|
|
|
- List<Video> v1 = extractAndSort(param, RegionRealtimeRecallStrategyV1.PUSH_FORM);
|
|
|
+ List<Video> v1 = extractAndSort(param, RegionRealtimeRecallStrategyV1_sort.PUSH_FORM);
|
|
|
v1 = v1.stream().filter(r-> !setVideo.contains(r.getVideoId())).collect(Collectors.toList());
|
|
|
v1 = v1.subList(0, Math.min(mergeWeight.getOrDefault("v1", 5.0).intValue(), v1.size()));
|
|
|
rovRecallRank.addAll(v1);
|
|
@@ -221,14 +230,41 @@ public class RankStrategy4RegionMergeModelV563 extends RankStrategy4RegionMergeM
|
|
|
|
|
|
String title = videoInfo.getOrDefault("title", "");
|
|
|
if (!title.isEmpty()) {
|
|
|
- for (String name : Arrays.asList("c3_feature", "c4_feature", "c5_feature", "c6_feature", "c7_feature")) {
|
|
|
- for (String key_time : Arrays.asList("tags_1d", "tags_3d", "tags_7d")) {
|
|
|
- String tags = c34567Map.getOrDefault(name + "_" + key_time, "");
|
|
|
- if (!tags.isEmpty()) {
|
|
|
- Double[] doubles = ExtractorUtils.funcC34567ForTags(tags, title);
|
|
|
- featureMap.put(name + "_" + key_time + "_matchnum", doubles[0]);
|
|
|
- featureMap.put(name + "_" + key_time + "_maxscore", doubles[1]);
|
|
|
- featureMap.put(name + "_" + key_time + "_avgscore", doubles[2]);
|
|
|
+ if (similarityConcurrent) {
|
|
|
+ List<Future<Pair<String, Double[]>>> futures = new ArrayList<>();
|
|
|
+ for (String name : Arrays.asList("c3_feature", "c4_feature", "c5_feature", "c6_feature", "c7_feature")) {
|
|
|
+ for (String key_time : Arrays.asList("tags_1d", "tags_3d", "tags_7d")) {
|
|
|
+ String key = name + "_" + key_time;
|
|
|
+ String tags = c34567Map.getOrDefault(key, "");
|
|
|
+ if (!tags.isEmpty()) {
|
|
|
+ Future<Pair<String, Double[]>> future = ThreadPoolFactory.defaultPool().submit(() -> {
|
|
|
+ Double[] doubles = ExtractorUtils.funcC34567ForTags(tags, title);
|
|
|
+ return Pair.create(key, doubles);
|
|
|
+ });
|
|
|
+ futures.add(future);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ try {
|
|
|
+ for (Future<Pair<String, Double[]>> future : futures) {
|
|
|
+ Pair<String, Double[]> pair = future.get(1000, TimeUnit.MILLISECONDS);
|
|
|
+ featureMap.put(pair.getFirst() + "_matchnum", pair.getSecond()[0]);
|
|
|
+ featureMap.put(pair.getFirst() + "_maxscore", pair.getSecond()[1]);
|
|
|
+ featureMap.put(pair.getFirst() + "_avgscore", pair.getSecond()[2]);
|
|
|
+ }
|
|
|
+ } catch (Exception e) {
|
|
|
+ log.error("concurrent similarity error", e);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ for (String name : Arrays.asList("c3_feature", "c4_feature", "c5_feature", "c6_feature", "c7_feature")) {
|
|
|
+ for (String key_time : Arrays.asList("tags_1d", "tags_3d", "tags_7d")) {
|
|
|
+ String tags = c34567Map.getOrDefault(name + "_" + key_time, "");
|
|
|
+ if (!tags.isEmpty()) {
|
|
|
+ Double[] doubles = ExtractorUtils.funcC34567ForTags(tags, title);
|
|
|
+ featureMap.put(name + "_" + key_time + "_matchnum", doubles[0]);
|
|
|
+ featureMap.put(name + "_" + key_time + "_maxscore", doubles[1]);
|
|
|
+ featureMap.put(name + "_" + key_time + "_avgscore", doubles[2]);
|
|
|
+ }
|
|
|
}
|
|
|
}
|
|
|
}
|
|
@@ -295,34 +331,30 @@ public class RankStrategy4RegionMergeModelV563 extends RankStrategy4RegionMergeM
|
|
|
// 3 排序
|
|
|
Map<String, String> sceneFeatureMap = new HashMap<>(0);
|
|
|
|
|
|
- List<RankItem> items = ScorerUtils.getScorerPipeline("feeds_score_config_xgb_20240828.conf")
|
|
|
+ List<RankItem> items = ScorerUtils.getScorerPipeline("feeds_score_config_20240807.conf")
|
|
|
.scoring(sceneFeatureMap, userFeatureMap, rankItems);
|
|
|
- Map<String, Map<String, String>> vid2MapFeature = this.getVideoRedisFeature(vids, "redis:vid_hasreturn_rov:");
|
|
|
- Map<String, Map<String, String>> vid2VovFeatureMap = this.getVideoRedisFeature(vids, "redis:vid_vov_1d3d:");
|
|
|
- double alpha_vov = mergeWeight.getOrDefault("alpha_vov", 2.0);
|
|
|
+ String redisScoreKey = mergeWeight.getOrDefault("redisScoreKey", 0.0) < 0.5 ? "redis:vid_hasreturn_rov:" : "redis:vid_hasreturn_rov_7d:";
|
|
|
+ Map<String, Map<String, String>> vid2MapFeature = this.getVideoRedisFeature(vids, redisScoreKey);
|
|
|
List<Video> result = new ArrayList<>();
|
|
|
-// String hasReturnRovKey = mergeWeight.getOrDefault("hasReturnRovKey", 1.0) < 0.5 ? "rate_1" : "rate_n";
|
|
|
-// Double chooseFunction = mergeWeight.getOrDefault("chooseFunction", 0.0);
|
|
|
+ String hasReturnRovKey = mergeWeight.getOrDefault("hasReturnRovKey", 1.0) < 0.5 ? "rate_1" : "rate_n";
|
|
|
+ Double chooseFunction = mergeWeight.getOrDefault("chooseFunction", 0.0);
|
|
|
|
|
|
for (RankItem item : items) {
|
|
|
double score = 0.0;
|
|
|
- double recommend_rate_1d = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
- .getOrDefault("recommend_rate_1d", "0"));
|
|
|
- double recommend_exp_per_1d = Double.parseDouble(vid2VovFeatureMap.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
- .getOrDefault("recommend_exp_per_1d", "0"));
|
|
|
- double vorScore = recommend_rate_1d * recommend_exp_per_1d;
|
|
|
- item.getScoresMap().put("recommend_rate_1d", recommend_rate_1d);
|
|
|
- item.getScoresMap().put("recommend_exp_per_1d", recommend_exp_per_1d);
|
|
|
- item.getScoresMap().put("vorScore", vorScore);
|
|
|
- item.getScoresMap().put("alpha_vov", alpha_vov);
|
|
|
double hasReturnRovScore = Double.parseDouble(vid2MapFeature.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
- .getOrDefault("rate_n", "0"));
|
|
|
+ .getOrDefault(hasReturnRovKey, "0"));
|
|
|
item.getScoresMap().put("hasReturnRovScore", hasReturnRovScore);
|
|
|
- double rovRateOrigin = item.getScoreRov();
|
|
|
- item.getScoresMap().put("rovRateOrigin", rovRateOrigin);
|
|
|
- double rovRate = restoreScore(rovRateOrigin);
|
|
|
- item.getScoresMap().put("rovRate", rovRate);
|
|
|
- score = rovRate * (1 + hasReturnRovScore) * (1.0 + alpha_vov * recommend_rate_1d);
|
|
|
+ double fmRovOrigin = item.getScoreRov();
|
|
|
+ item.getScoresMap().put("fmRovOrigin", fmRovOrigin);
|
|
|
+ double fmRov = restoreScore(fmRovOrigin);
|
|
|
+ item.getScoresMap().put("fmRov", fmRov);
|
|
|
+ if (chooseFunction == 0){
|
|
|
+ score = fmRov * (1 + hasReturnRovScore);
|
|
|
+ }else if (chooseFunction == 1){
|
|
|
+ score = fmRov * (1 + Math.log(hasReturnRovScore + 1));
|
|
|
+ }else {
|
|
|
+ score = fmRov * ExtractorUtils.sigmoid(hasReturnRovScore);
|
|
|
+ }
|
|
|
|
|
|
Video video = item.getVideo();
|
|
|
video.setScore(score);
|
|
@@ -346,7 +378,7 @@ public class RankStrategy4RegionMergeModelV563 extends RankStrategy4RegionMergeM
|
|
|
}
|
|
|
|
|
|
private void readBucketFile() {
|
|
|
- InputStream resourceStream = RankStrategy4RegionMergeModelV563.class.getClassLoader().getResourceAsStream("20240609_bucket_274.txt");
|
|
|
+ InputStream resourceStream = RankStrategy4RegionMergeModelV552.class.getClassLoader().getResourceAsStream("20240609_bucket_274.txt");
|
|
|
if (resourceStream != null) {
|
|
|
try (BufferedReader reader = new BufferedReader(new InputStreamReader(resourceStream))) {
|
|
|
Map<String, double[]> bucketsMap = new HashMap<>();
|