Quellcode durchsuchen

feat:更新562实验

zhaohaipeng vor 3 Monaten
Ursprung
Commit
8130b4ac63

+ 42 - 148
recommend-server-service/src/main/java/com/tzld/piaoquan/recommend/server/service/rank/strategy/RankStrategy4RegionMergeModelV562.java

@@ -10,13 +10,10 @@ import com.tzld.piaoquan.recommend.server.service.rank.extractor.ExtractorUtils;
 import com.tzld.piaoquan.recommend.server.service.recall.strategy.*;
 import com.tzld.piaoquan.recommend.server.service.score.ScorerUtils;
 import com.tzld.piaoquan.recommend.server.util.CommonCollectionUtils;
-import com.tzld.piaoquan.recommend.server.util.FeatureBucketUtils;
-import com.tzld.piaoquan.recommend.server.util.SimilarityUtils;
 import lombok.extern.slf4j.Slf4j;
 import org.apache.commons.collections4.MapUtils;
 import org.apache.commons.math3.util.Pair;
 import org.springframework.beans.factory.annotation.Autowired;
-import org.springframework.beans.factory.annotation.Value;
 import org.springframework.stereotype.Service;
 
 import java.util.*;
@@ -33,14 +30,6 @@ public class RankStrategy4RegionMergeModelV562 extends RankStrategy4RegionMergeM
     @Autowired
     private FeatureService featureService;
 
-    private static final List<String> shortPeriod = Arrays.asList("1h", "2h", "4h", "6h", "12h", "24h", "7d");
-    private static final List<String> middlePeriod = Arrays.asList("14d", "30d");
-    private static final List<String> longPeriod = Arrays.asList("7d", "35d", "90d", "365d");
-    private static final List<String> cfRosList = Collections.singletonList("rosn");
-    private static final List<String> cfRovList = Collections.singletonList("rovn");
-    private static final List<String> videoSimAttrs = Arrays.asList("cate1_list", "cate2", "cate2_list",
-            "keywords", "style", "theme", "title", "topic", "user_value");
-
     @Override
     public List<Video> mergeAndRankRovRecall(RankParam param) {
         Map<String, Double> mergeWeight = this.mergeWeight != null ? this.mergeWeight : new HashMap<>(0);
@@ -88,12 +77,11 @@ public class RankStrategy4RegionMergeModelV562 extends RankStrategy4RegionMergeM
         // k1:视频、k2:表、k3:特征、v:特征值
         String provinceCn = param.getProvince().replaceAll("省$", "");
         String headVid = String.valueOf(param.getHeadVid());
-        String sceneType = String.valueOf(param.getHotSceneType());
-        Map<String, Map<String, Map<String, String>>> videoBaseInfoMap = featureService.getVideoBaseInfo(headVid, vids);
-        FeatureService.Feature feature = featureService.getNewFeature(provinceCn, param.getMid(), sceneType, headVid, videoBaseInfoMap, vids);
+        FeatureService.Feature feature = featureService.getFeature(param.getMid(), vids,
+                String.valueOf(param.getAppType()), provinceCn, headVid);
         Map<String, Map<String, String>> featureOriginUser = feature.getUserFeature();
         Map<String, Map<String, Map<String, String>>> featureOriginVideo = feature.getVideoFeature();
-        Map<String, String> headVideoInfo = videoBaseInfoMap.getOrDefault(headVid, new HashMap<>()).getOrDefault("alg_vid_feature_basic_info", new HashMap<>());
+
 
         // 2 特征处理
         Map<String, Double> userFeatureMapDouble = new HashMap<>();
@@ -209,25 +197,22 @@ public class RankStrategy4RegionMergeModelV562 extends RankStrategy4RegionMergeM
                     double f3 = ExtractorUtils.calDiv(returns, exp);
                     double f4 = ExtractorUtils.calLog(returns);
                     double f5 = f3 * f4;
-                    double f6 = ExtractorUtils.calDiv(returns, share);
 
                     String key1 = tuple4.name + "_" + prefix2 + "_" + "STR";
                     String key2 = tuple4.name + "_" + prefix2 + "_" + "log(share)";
                     String key3 = tuple4.name + "_" + prefix2 + "_" + "ROV";
                     String key4 = tuple4.name + "_" + prefix2 + "_" + "log(return)";
                     String key5 = tuple4.name + "_" + prefix2 + "_" + "ROV*log(return)";
-                    String key6 = tuple4.name + "_" + prefix2 + "_" + "ROS";
 
                     featureMap.put(key1, f1);
                     featureMap.put(key2, f2);
                     featureMap.put(key3, f3);
                     featureMap.put(key4, f4);
                     featureMap.put(key5, f5);
-                    featureMap.put(key6, f6);
                 }
             }
 
-            Map<String, String> videoInfo = videoBaseInfoMap.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_basic_info", new HashMap<>());
+            Map<String, String> videoInfo = featureOriginVideo.getOrDefault(vid, new HashMap<>()).getOrDefault("alg_vid_feature_basic_info", new HashMap<>());
             featureMap.put("total_time", Double.parseDouble(videoInfo.getOrDefault("total_time", "0")));
             featureMap.put("bit_rate", Double.parseDouble(videoInfo.getOrDefault("bit_rate", "0")));
 
@@ -240,7 +225,12 @@ public class RankStrategy4RegionMergeModelV562 extends RankStrategy4RegionMergeM
                         String tags = c34567Map.getOrDefault(key, "");
                         if (!tags.isEmpty()) {
                             Future<Pair<String, Double[]>> future = ThreadPoolFactory.defaultPool().submit(() -> {
-                                Double[] doubles = ExtractorUtils.funcC34567ForTagsNew(tags, title);
+                                Double[] doubles = null;
+                                if (param.getAbExpCodes().contains(word2vecExp)) {
+                                    doubles = ExtractorUtils.funcC34567ForTagsNew(tags, title);
+                                } else {
+                                    doubles = ExtractorUtils.funcC34567ForTags(tags, title);
+                                }
                                 return Pair.create(key, doubles);
                             });
                             futures.add(future);
@@ -281,25 +271,43 @@ public class RankStrategy4RegionMergeModelV562 extends RankStrategy4RegionMergeM
                 featureMap.put("d1_return_n", Double.parseDouble(d1.getOrDefault("return_n", "0")));
                 featureMap.put("d1_rovn", Double.parseDouble(d1.getOrDefault("rovn", "0")));
             }
-            // ******************** new feature ********************
-            addVideoStatFeature(vid, featureOriginVideo, featureMap);
-            //addVideoCFFeature(vid, featureOriginVideo, featureMap);
-            addVideoSimFeature(headVideoInfo, videoInfo, featureMap);
-
             item.featureMapDouble = featureMap;
         }
 
         // 3 连续值特征分桶
-        Map<String, String> userFeatureMap = FeatureBucketUtils.bucketFeature("20241209_rov_bucket.txt", userFeatureMapDouble);
-        Map<String, String> norUserFeatureMap = FeatureBucketUtils.bucketFeature("20241209_nor_bucket.txt", userFeatureMapDouble);
+        readBucketFile();
+        Map<String, String> userFeatureMap = new HashMap<>(userFeatureMapDouble.size());
+        for (Map.Entry<String, Double> entry : userFeatureMapDouble.entrySet()) {
+            String name = entry.getKey();
+            Double score = entry.getValue();
+            // 注意:0值、不在分桶文件中的特征,会被过滤掉。
+            if (score > 1E-8 && this.bucketsLen.containsKey(name) && this.bucketsMap.containsKey(name)) {
+                Double bucketNum = this.bucketsLen.get(name);
+                double[] buckets = this.bucketsMap.get(name);
+                Double scoreNew = 1.0 / bucketNum * (ExtractorUtils.findInsertPosition(buckets, score) + 1.0);
+                userFeatureMap.put(name, String.valueOf(scoreNew));
+            }
+        }
         for (RankItem item : rankItems) {
+            Map<String, String> featureMap = new HashMap<>();
             Map<String, Double> featureMapDouble = item.featureMapDouble;
-            item.featureMap = FeatureBucketUtils.bucketFeature("20241209_rov_bucket.txt", featureMapDouble);
-            item.norFeatureMap = FeatureBucketUtils.bucketFeature("20241209_nor_bucket.txt", featureMapDouble);
+
+            for (Map.Entry<String, Double> entry : featureMapDouble.entrySet()) {
+                String name = entry.getKey();
+                Double score = entry.getValue();
+                // 注意:0值、不在分桶文件中的特征,会被过滤掉。
+                if (score > 1E-8 && this.bucketsLen.containsKey(name) && this.bucketsMap.containsKey(name)) {
+                    Double bucketNum = this.bucketsLen.get(name);
+                    double[] buckets = this.bucketsMap.get(name);
+                    Double scoreNew = 1.0 / bucketNum * (ExtractorUtils.findInsertPosition(buckets, score) + 1.0);
+                    featureMap.put(name, String.valueOf(scoreNew));
+                }
+            }
+            item.featureMap = featureMap;
         }
         // 4 排序模型计算
         Map<String, String> sceneFeatureMap = new HashMap<>(0);
-        List<RankItem> items = ScorerUtils.getScorerPipeline("feeds_score_config_xgb_20241209.conf").scoring(sceneFeatureMap, userFeatureMap, norUserFeatureMap, rankItems);
+        List<RankItem> items = ScorerUtils.getScorerPipeline("feeds_score_config_20240807.conf").scoring(sceneFeatureMap, userFeatureMap, rankItems);
         // 5 排序公式特征
         Map<String, Map<String, String>> vid2MapFeature = this.getVideoRedisFeature(vids, "redis:vid_hasreturn_vor:");
         List<Video> result = new ArrayList<>();
@@ -309,12 +317,11 @@ public class RankStrategy4RegionMergeModelV562 extends RankStrategy4RegionMergeM
             item.getScoresMap().put("fmRovOrigin", fmRovOrigin);
             double fmRov = restoreScore(fmRovOrigin);
             item.getScoresMap().put("fmRov", fmRov);
-            double hasReturnRovScore = Double.parseDouble(vid2MapFeature.getOrDefault(item.getVideoId() + "", new HashMap<>()).getOrDefault("rov", "0"));
+            double hasReturnRovScore = this.calcHasReturnRovScore(vid2MapFeature.getOrDefault(item.getVideoId() + "", new HashMap<>()));
             item.getScoresMap().put("hasReturnRovScore", hasReturnRovScore);
-            double norXGBScore = item.getScoresMap().getOrDefault("NorXGBScore", 0d);
             double vor = Double.parseDouble(vid2MapFeature.getOrDefault(item.getVideoId() + "", new HashMap<>()).getOrDefault("vor", "0"));
             item.getScoresMap().put("vor", vor);
-            score = fmRov * (0.1 + Math.pow(norXGBScore, 1.1)) * (0.1 + vor);
+            score = fmRov * (0.1 + hasReturnRovScore) * (0.1 + vor);
             Video video = item.getVideo();
             video.setScore(score);
             video.setSortScore(score);
@@ -323,12 +330,6 @@ public class RankStrategy4RegionMergeModelV562 extends RankStrategy4RegionMergeM
             if (MapUtils.isNotEmpty(feature.getVideoFeature()) && MapUtils.isNotEmpty(feature.getVideoFeature().get(item.getVideoId() + ""))) {
                 video.getMetaFeatureMap().putAll(feature.getVideoFeature().get(item.getVideoId() + ""));
             }
-            if (MapUtils.isNotEmpty(videoBaseInfoMap) && MapUtils.isNotEmpty(videoBaseInfoMap.get(item.getVideoId() + ""))) {
-                video.getMetaFeatureMap().putAll(videoBaseInfoMap.get(item.getVideoId() + ""));
-            }
-            if (MapUtils.isNotEmpty(headVideoInfo)) {
-                video.getMetaFeatureMap().put("head_video", headVideoInfo);
-            }
             if (MapUtils.isNotEmpty(feature.getUserFeature())) {
                 video.getMetaFeatureMap().putAll(feature.getUserFeature());
             }
@@ -338,114 +339,7 @@ public class RankStrategy4RegionMergeModelV562 extends RankStrategy4RegionMergeM
         return result;
     }
 
-    private Map<String, String> getVideoOneTypeInfo(String vid, String name,
-                                                    Map<String, Map<String, Map<String, String>>> videoAllInfoMap) {
-        if (null == videoAllInfoMap) {
-            return new HashMap<>();
-        }
-        return videoAllInfoMap.getOrDefault(vid, new HashMap<>()).getOrDefault(name, new HashMap<>());
-    }
-
-    private double getVideoOneInfo(String name, Map<String, String> infoMap) {
-        if (null == infoMap) {
-            return 0.0;
-        }
-        return infoMap.isEmpty() ? 0 : Double.parseDouble(infoMap.getOrDefault(name, "0.0"));
-    }
-
-    private void addVideoStatFeature(String vid, Map<String, Map<String, Map<String, String>>> videoAllInfoMap,
-                                     Map<String, Double> featureMap) {
-        List<Tuple3> vidStatInfo = Arrays.asList(
-                new Tuple3("b20", shortPeriod, getVideoOneTypeInfo(vid, "alg_cate2_feature", videoAllInfoMap)),
-                new Tuple3("b21", shortPeriod, getVideoOneTypeInfo(vid, "alg_cate1_feature", videoAllInfoMap)),
-                new Tuple3("b22", shortPeriod, getVideoOneTypeInfo(vid, "alg_vid_source_feature", videoAllInfoMap)),
-                new Tuple3("b28", shortPeriod, getVideoOneTypeInfo(vid, "alg_sence_type_feature", videoAllInfoMap)),
-                new Tuple3("b29", shortPeriod, getVideoOneTypeInfo(vid, "alg_videoid_feature", videoAllInfoMap)),
-                new Tuple3("b23", middlePeriod, getVideoOneTypeInfo(vid, "alg_cate2_feature_day", videoAllInfoMap)),
-                new Tuple3("b24", middlePeriod, getVideoOneTypeInfo(vid, "alg_cate1_feature_day", videoAllInfoMap)),
-                new Tuple3("b25", middlePeriod, getVideoOneTypeInfo(vid, "alg_video_source_feature_day", videoAllInfoMap)),
-                new Tuple3("b26", longPeriod, getVideoOneTypeInfo(vid, "alg_video_unionid_feature_day", videoAllInfoMap)),
-                new Tuple3("b27", longPeriod, getVideoOneTypeInfo(vid, "alg_vid_feature_day", videoAllInfoMap))
-        );
-        for (Tuple3 tuple3 : vidStatInfo) {
-            String infoType = tuple3.first;
-            List<String> infoPeriod = tuple3.second;
-            Map<String, String> infoMap = tuple3.third;
-            for (String period : infoPeriod) {
-                double share = getVideoOneInfo("share_" + period, infoMap);
-                double return_ = getVideoOneInfo("return_" + period, infoMap);
-                double view_hasreturn = getVideoOneInfo("view_hasreturn_" + period, infoMap);
-                double share_hasreturn = getVideoOneInfo("share_hasreturn_" + period, infoMap);
-                double ros = getVideoOneInfo("ros_" + period, infoMap);
-                double rov = getVideoOneInfo("rov_" + period, infoMap);
-                double r_cnt = getVideoOneInfo("r_cnt_" + period, infoMap);
-                double r_rate = getVideoOneInfo("r_rate_" + period, infoMap);
-                double r_cnt4s = getVideoOneInfo("r_cnt4s_" + period, infoMap);
-                double str = getVideoOneInfo("str_" + period, infoMap);
-
-                featureMap.put(infoType + "_" + period + "_" + "share", ExtractorUtils.calLog(share));
-                featureMap.put(infoType + "_" + period + "_" + "return", ExtractorUtils.calLog(return_));
-                featureMap.put(infoType + "_" + period + "_" + "view_hasreturn", ExtractorUtils.calLog(view_hasreturn));
-                featureMap.put(infoType + "_" + period + "_" + "share_hasreturn", ExtractorUtils.calLog(share_hasreturn));
-                featureMap.put(infoType + "_" + period + "_" + "ros", ros);
-                featureMap.put(infoType + "_" + period + "_" + "rov", rov);
-                featureMap.put(infoType + "_" + period + "_" + "r_cnt", r_cnt);
-                featureMap.put(infoType + "_" + period + "_" + "r_rate", r_rate);
-                featureMap.put(infoType + "_" + period + "_" + "r_cnt4s", r_cnt4s);
-                featureMap.put(infoType + "_" + period + "_" + "str", str);
-            }
-        }
-    }
-
-    private void addVideoCFFeature(String vid, Map<String, Map<String, Map<String, String>>> videoAllInfoMap,
-                                   Map<String, Double> featureMap) {
-        List<Tuple3> vidCFInfo = Arrays.asList(
-                new Tuple3("d2", cfRosList, getVideoOneTypeInfo(vid, "alg_recsys_feature_weak_cf_i2i_scene_ros", videoAllInfoMap)),
-                new Tuple3("d3", cfRosList, getVideoOneTypeInfo(vid, "alg_recsys_feature_cf_i2i_scene_ros", videoAllInfoMap)),
-                new Tuple3("d4", cfRovList, getVideoOneTypeInfo(vid, "alg_recsys_feature_weak_cf_i2i_scene_rov", videoAllInfoMap)),
-                new Tuple3("d5", cfRovList, getVideoOneTypeInfo(vid, "alg_recsys_feature_cf_i2i_scene_rov", videoAllInfoMap))
-        );
-        for (Tuple3 tuple3 : vidCFInfo) {
-            String infoType = tuple3.first;
-            List<String> valTypeList = tuple3.second;
-            Map<String, String> infoMap = tuple3.third;
-            if (!infoMap.isEmpty()) {
-                for (String valType : valTypeList) {
-                    double exp = getVideoOneInfo("exp", infoMap);
-                    double return_n = getVideoOneInfo("return_n", infoMap);
-                    double value = getVideoOneInfo(valType, infoMap);
-
-                    featureMap.put(infoType + "_exp", ExtractorUtils.calLog(exp));
-                    featureMap.put(infoType + "_return_n", ExtractorUtils.calLog(return_n));
-                    featureMap.put(infoType + "_" + valType, value);
-                }
-            }
-        }
-    }
-
-    private void addVideoSimFeature(Map<String, String> headInfo, Map<String, String> rankInfo, Map<String, Double> featureMap) {
-        if (!headInfo.isEmpty() && !rankInfo.isEmpty()) {
-            List<Future<Pair<String, Double>>> futures = new ArrayList<>();
-            for (String attr : videoSimAttrs) {
-                String headAttr = headInfo.getOrDefault(attr, "");
-                String rankAttr = rankInfo.getOrDefault(attr, "");
-                if (!"".equals(headAttr) && !"".equals(rankAttr)) {
-                    String key = "video_sim_" + attr;
-                    Future<Pair<String, Double>> future = ThreadPoolFactory.defaultPool().submit(() -> {
-                        double simScore = SimilarityUtils.word2VecSimilarity(headAttr, rankAttr);
-                        return Pair.create(key, simScore);
-                    });
-                    futures.add(future);
-                }
-            }
-            try {
-                for (Future<Pair<String, Double>> future : futures) {
-                    Pair<String, Double> pair = future.get(1000, TimeUnit.MILLISECONDS);
-                    featureMap.put(pair.getFirst(), pair.getSecond());
-                }
-            } catch (Exception e) {
-                log.error("video attr similarity error", e);
-            }
-        }
+    private double calcHasReturnRovScore(Map<String, String> feature){
+        return Double.parseDouble(feature.getOrDefault("rov", "0"));
     }
 }